מודול מוצלב
בערך זה |
במתמטיקה, מודול מוצלב (באנגלית: crossed module) הוא מבנה מתמטי המורכב מ-2 חבורות G ו-H, כאשר G פועלת על H (ניתן לדון במקרה של פעולה שמאלית הפענוח נכשל (שגיאת המרה. השרת ("https://wikimedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle (g,h)\mapsto ^{g}\!h=g\cdot h} או פעולה ימנית הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (h,g) \mapsto h^g = h \cdot g} ), ויש הומומורפיזם של חבורות
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle d\colon H \longrightarrow G, \! }
שמכבד את פעולת ההצמדה של G על עצמה
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle d(^g h) = gd(h)g^{-1} \! }
ומקיים את זהות פייפר (Peiffer):
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle ^{d(h_{1})}{h_2} = h_{1}h_{2}h_{1}^{-1} \! } .
כאשר מגדירים מודול מוצלב עם פעולה ימנית הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle h^g = h \bullet g} , רושמים במקום:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle d(h^g) = g^{-1} d(h) g}
וזהות פייפר היא
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle h_2^{d(h_1)} = h_1^{-1} h_2 h_1} .
דוגמאות
- המודול המוצלב הטריוויאלי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{id} : G \to G} הוא מודול מוצלב ימני עם הפעולה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle h^g = g^{-1} h g} ושמאלי עם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle ^gh=g h g^{-1}} .
- תהי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle H < G} תת-חבורה נורמלית ו-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle d : H \hookrightarrow G} הומומורפיזם השיכון. זהו מודול מוצלב (ימני) עם הפעולה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle h^g = g^{-1} h g} . הנורמליות מבטיחה ש-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle h^g = g^{-1} h g \in H} ולכן הפעולה מוגדרת היטב.
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle d : H \twoheadrightarrow G} כאשר d על והגרעין של d מרכזי, כלומר: הפענוח נכשל (שגיאת המרה. השרת ("https://wikimedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle \ker(d)\subseteq Z(H)} .
- יהי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle d : G \to \mathrm{Aut}(G)} כאשר d שולח כל איבר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle g \in G} לאוטומורפיזם הפנימי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x \mapsto g^{-1} x g} בחבורות האוטומורפיזמים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{Aut}(G)} , והפעולה היא הפעולה הטבעית של האוטומורפיזם: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle h^g = [\![ x \mapsto g^{-1} x g ]\!](h)=g^{-1} h g} (פעולה ימנית). אזי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle d : G \to \mathrm{Aut}(G)} הוא מודול מוצלב (ימני).
שימושים
הנושא הוזכר לראשונה על ידי ג'ון וייטהד בשנת 1941 ובעבדותו משנת 1946 הוא לראשונה השתמש בשם "מודול מוצלב". למודולים מוצלבים יש שימושים בחישוב קוהומולוגיות באלגברה הומולוגית ובפרט עם גישת חבורות-2 וגרופואידים. כמו כן, למושג זה קשר חזק לטופולוגיה אלגברית וחבורות הומוטופיה.
קישורים חיצוניים
- J. Baez and A. Lauda, Higher-dimensional algebra V: 2-groups
- R. Brown, Groupoids and crossed objects in algebraic topology
- R. Brown, Higher dimensional group theory
- R. Brown, P.J. Higgins, R. Sivera, Nonabelian algebraic topology: filtered spaces, crossed complexes, cubical homotopy groupoids, EMS Tracts in Mathematics Vol. 15, 703 pages. (August 2011) (אורכב 08.06.2020 בארכיון Wayback Machine).
- M. Forrester-Barker, Group objects and internal categories
- Behrang Noohi, Notes on 2-groupoids, 2-groups and crossed-modules
- Crossed module, Encyclopedia of Mathematics
30808595מודול מוצלב