מבחן כי בריבוע
מִבְחַן כִי בָּרִבּוּעַ (הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi^2} , נהגה בכ' רפה, לעיתים נכתב חי בריבוע) הוא למעשה אוסף של מבחנים סטטיסטיים שמטרתם לבדוק את טיב ההתאמה של מודל התפלגותי לנתונים איכותיים או בדידים. המשותף לכל המבחנים האלה הוא שההתפלגות של סטטיסטי המבחן היא התפלגות כי בריבוע (במדויק או בקירוב). מבחנים אלה משמשים גם כבסיס למגוון מקדמי קשר (או מתאם), כגון מקדם הקשר של קראמר.
השם "כי בריבוע" מקורו באות היוונית , כי.
היסטוריה
לאחר שקרל פירסון פיתח את המדד הידוע כ-"מתאם פירסון" למדידת עוצמת הקשר בין משתנים כמותיים, הוא פנה לפיתוח מקדם דומה למדידת הקשר בין שני משתנים איכותיים (קטגוריים), שנתוניהם מוצגים בלוח שכיחות דו ממדי. בשנת 1900 הציג את סטטיסטי חי-בריבוע, שמבטא רעיון דומה לרעיון של מקדם המתאם[1]. בעוד שמקדם המתאם התבסס על ההפרשים בין התצפיות והממוצע שלהן. סטטיסטי כי בריבוע מבוסס על ההפרש בין מספר התצפיות בתא מסוים בלוח השכיחות הדו ממדי, והמספר הצפוי של התצפיות באותו תא בהנחה כי יש אי תלות בין משתנים. פירסון הראה כי ההתפלגות האסימפטוטית של המדד שפיתח היא אכן התפלגות כי בריבוע, ומכאן שמו של המדד.
תאוריה
מבחן כי בריבוע לבדיקת השערת אי תלות
יהיו הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} ו-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y} שני משתנים איכותיים (כלומר נמדדים בסולם מדידה שמי או סודר). נסמן את הערכים שהמשתנה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} יכול לקבל ב-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=1,...,I} ואת הערכים שהמשתנה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y} יכול לקבל ב-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle j=1,...,J} .
בהינתן מדגם בגודל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} , נסמן ב-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle O_{ij}} את מספר התצפיות במדגם עבורן ו-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y=j} .
אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} ו-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y} הם משתנים בלתי תלויים הרי שמתקיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(X=i, Y=j)=P(X=i)P(Y=j)} לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle i} ולכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} . תחת הנחה זו, ניתן לאמוד את הערך הצפוי של מספר התצפיות עבורן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X=i} ו-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y=j} , שנסמן ב- על ידי:
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_{ij}=\frac{n_{i\cdot} n_{\cdot j}} {n}}
כאשר
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} הוא גודל המדגם
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n_{i \cdot}} הוא מספר התצפיות עבורן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X=i}
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n_{\cdot j}} הוא מספר התצפיות עבורן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y=j}
סטטיסטי כי בריבוע לבדיקת ההשערה כי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} ו-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y} הם בלתי תלויים מוגדר כ-
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi^2=\sum_{ij} \frac {(O_{ij}-E_{ij})^2} {E_{ij}}}
והתפלגותו האסימפטוטית היא התפלגות כי בריבוע עם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (I-1)(J-1)} דרגות חופש.
השערת אי התלות תידחה אם הערך המחושב של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi^2} גדול מערך קריטי הנקבע על פי רמת המובהקות α שנקבעה מראש, או אם ערך ה-p המחושב קטן מרמת המובהקות הזו.
מבחן כי בריבוע לבדיקת טיב ההתאמה של מודל מולטינומי
יהי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} משתנה איכותי שיכול לקבל את הערכיםהפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=1,...,I} . התפלגותו של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} היא התפלגות מולטינומית. נסמן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle p_i=P(x=i)} .
בהינתן מדגם בגודל , נסמן ב-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle O_i} את מספר התצפיות במדגם עבורן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X=i} .
מודל מולטינומי עבור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} הוא מפרט (ספציפיקציה) של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{p}=(p_1, \dots, p_I)} על ידי פרמטר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta} (שיכול להיות גם וקטור של פרמטרים, או וקטור ממימד 0, כלומר מפרט אי פרמטרי). בהינתן המודל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{p}=\mathbf{p(\theta)}} , ניתן לאמוד את הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta} , ובעזרת אמדן זה אפשר לאמוד את הערך הצפוי של מספר התצפיות עבורן , שנסמן ב-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_i} , על ידי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_i=np_i} .
סטטיסטי כי בריבוע לבדיקת ההשערה כי המודל מתאים לנתונים מוגדר כ- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi^2=\sum_{i} \frac {(O_{i}-E_{i})^2} {E_i}} , והתפלגותו האסימפטוטית היא התפלגות כי בריבוע עם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{df}=I-1-\dim(\theta)} דרגות חופש.
מבחן כי בריבוע לבדיקת השערת אי התלות בין שני משתנים הוא מקרה פרטי של מבחן כי בריבוע לבדיקת טיב ההתאמה של מודל מולטינומי.
מבחן יחס הנראות
מבחן כי בריבוע לבדיקת השערת אי התלות פותח על ידי פירסון תוך שימוש בשיקולי מומנטים. עם זאת, ניתן לבדוק את השערת אי התלות בפרט, ואת טיב ההתאמה של מודל מולטינומי בכלל, על ידי שימוש במבחן יחס הנראות, על פי הלמה של ניימן ופירסון. סטטיסטי מבחן יחס הנראות שונה מסטטיסטי מבחן כי בריבוע, אך שני המבחנים שקולים אסימפטוטית.
מבחן יחס הנראות לבדיקת השערת אי התלות הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle G^2 = \sum_{ij} O_{ij} \log \frac {O_{ij}} {E_{ij}}} והתפלגותו האסימפטוטית היא התפלגות כי בריבוע עם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (I-1)(J-1)} דרגות חופש.
באופן דומה, מבחן יחס הנראות לבדיקת טיב ההתאמה של מודל מולטינומי הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle G^2 = \sum_i O_i \log \frac {O_i} {E_i}} , והתפלגותו האסימפטוטית היא התפלגות כי בריבוע עם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{df}=I-1-\dim(\theta)} דרגות חופש.
ניתן להראות כי סטטיסטי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi^2} הוא קירוב של סטטיסטי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle G^2} על ידי פיתוח טור טיילור של פונקציית הלוגריתם הטבעי סביב 1 והשמטת האיברים מסדר 3 ומעלה.
דוגמאות לשימושים
השערת אי תלות - קשר בין מין להעדפה פוליטית
בסקר שנערך בארצות הברית בשנת 2000 נשאלו 2,757 איש לגבי העדפתם הפוליטית[2]. הנתונים המקובצים לפי מין מופיעים בטבלה הבאה:
העדפה פוליטית | |||||
---|---|---|---|---|---|
רפובליקני | עצמאי | דמוקרט | סך הכל | ||
מין | גבר | 468 (533.7) |
327 (319.6) |
762 (703.7) |
1557 |
אשה | 477 (411.3) |
239 (246.4) |
484 (542.3) |
1200 | |
סך הכל | 945 | 566 | 1246 | 2757 |
לדוגמה, 468 גברים הביעו תמיכה במפלגה הרפובליקנית ו-484 נשים הביעו תמיכה במפלגה הדמוקרטית.
נסמן ב-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} את משתנה המין, כאשר 1 מסמל גבר ו-2 מסמל אישה, ומכאן שמספר הערכים שמשתנה זה מקבל הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle I=2} . כמו כן נסמן ב-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y} את משתנה ההעדפה הפוליטית כאשר 1, 2, ו-3 מסמלים העדפה של המפלגה הרפובליקנית, העדפה עצמאית או העדפה של המפלגה הדמוקרטית בהתאמה, וכאן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle J=3} . על פי סימול זה, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle O_{11}=468} ו-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle O_{23}=484} .
הערכים הצפויים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_{ij}} מופיעים בטבלה בסוגריים. לדוגמה: מספר הנשים במדגם הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n_{2\cdot}=1200} , ומספר התומכים במפלגה הדמוקרטית הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n_{\cdot 3}=1246} . לכן המספר הצפוי של נשים התומכות במפלגה הדמוקרטית תחת ההנחה כי אין קשר בין המין וההעדפה הפוליטית הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_{23}=\frac {n_{2\cdot} \cdot n_{\cdot 3}} {n}=\frac {1200 \cdot 1246} {2757}= 542.3} .
בחישוב הערך של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi^2} נקבל כי
לאחר שנבצע חישובים דומים עבור כל ששת הצירופים האפשריים של ערכי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} ו-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y} , החישוב הסופי יראה כי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi^2=30.07} . בחישוב מבחן יחס הנראות נקבל כי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle G^2=30.0} . מספר דרגות החופש הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{df}=(I-1)(J-1)=(2-1)\cdot(3-1)=2} . ערך ה-p עבור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi^2} הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle p\mbox{-value} = 0.0000029} ולכן אם קבענו מראש כי רמת המובהקות של המבחן תהיה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha=0.05} נדחה את השערת האפס האומרת כי אין קשר בין המין וההעדפה הפוליטית.
קובייה הוגנת – טיב התאמה להתפלגות אחידה
קוביית משחק הוגנת היא כזו שהסיכויים שלה ליפול על כל פאה הם שווים, כלומר ההסתברות כי תוצאת ההטלה תהיה 1 שווה להסתברות כי תוצאת ההטלה תהיה 2 וכן הלאה. כל אחת מההסתברויות האלה שווה ל-1/6.
השערת האפס היא כי הקוביה הוגנת. השערה זו מתורגמת לאמירה המתמטית כי המודל הוא מודל התפלגות אחידה על המספרים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1,...,6} , כלומר זוהי התפלגות מולטינומית עם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle p_i=\frac {1} {6}} לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle i} . מודל זה אינו תלוי בפרמטר.
נניח כי הטלנו את הקוביה 100 פעמים והתקבלו התוצאות: 18,16,16,15,22,13 (כלומר, התוצאה "1" התקבלה 18 פעמים, התוצאה "2" התקבלה 16 פעמים, וכן הלאה). תחת ההנחה כי הקוביה הוגנת השכיחויות הצפויות שוות כולן 100/6, כלומר כ-16.7 עבור כל אחת מהתוצאות. החישובים של מבחן כי בריבוע מוצגים בטבלה הבאה:
תוצאת ההטלה | השכיחות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle O_i} | הערך הצפוי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ E_i} | כי בריבוע
(הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \frac{(O_i-E_i)^2}{E_i}} |
---|---|---|---|
1 | 18 | 16.67 | 0.107 |
2 | 16 | 16.67 | 0.027 |
3 | 16 | 16.67 | 0.027 |
4 | 15 | 16.67 | 0.167 |
5 | 22 | 16.67 | 1.707 |
6 | 13 | 16.67 | 0.807 |
סך הכל | 100 | 100.00 | 2.84 |
קיבלנו כי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi^2=2.84} . מספר דרגות החופש כאן הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{df}=5} , מכיוון ש-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle I=6} ואילו הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dim(\theta)=0} , מכיוון שההסתברויות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle p_i} לא היו תלויות בפרמטר.
ניתן לחשב כי ערך ה-p הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle p\mbox{-value} = 0.7246} . בהנחה שקבענו מראש כי רמת המובהקות של המבחן היא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha=0.05} , לא נדחה את השערת האפס.
השוואת התפלגויות - הבדלי העדפה בין גברים ונשים
לצורך סקר על העדפת מוצרים נערך מדגם שכלל 110 אנשים, שנתבקשו לדווח איזה מוצר הם מעדיפים מבין שלושה מוצרים. תוצאות הסקר (העדפה ומין הנשאל) נתונות בטבלה:
העדפת מוצר | |||||
---|---|---|---|---|---|
מוצר 1 | מוצר 2 | מוצר 3 | סך הכל | ||
מין | גבר | 20 | 19 | 18 | 57 |
אשה | 13 | 29 | 11 | 53 | |
סך הכל | 33 | 48 | 29 | 110 |
עורכי הסקר מעוניינים לדעת האם יש הבדלים בין ההעדפות של הגברים וההעדפות של הנשים, ולכן השערת האפס אומרת כי אין הבדל בין התפלגות ההעדפות של הגברים והתפלגות ההעדפות של הנשים.
בהנחה כי השערת האפס נכונה עלינו לאמוד כאן שני פרמטרים: את ההסתברות כי אדם (גבר או אשה) מעדיף את מוצר 1 ואת ההסתברות כי אדם (גבר או אשה) מעדיף את מוצר 2. האמדן להסתברות כי אדם מעדיף את מוצר 3 מתקבל על ידי השלמה ל-1. האמדנים האלה הם ו-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta_2=p_2=48/110=0.436} . מכאן נקבל כי האמדן ל-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle p_3} הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0.264} .
כמו כן נניח כי ההסתברות שאדם במדגם הוא גבר שווה להסתברות כי האדם הוא אשה, ולכן שתי הסתברויות אלה שוות ל-0.5.
על סמך האמדנים האלה נוכל לחשב כי (כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X=1} מסמל גבר): הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_{11}=110 \cdot 0.3 \cdot 0.5 =16.5} , וכן הלאה לכל התאים בלוח השכיחות. החישוב הסופי מעלה כי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi^2=5.26} .
נאמדו 2 פרמטרים (הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dim(\theta)=2} ), ולכן נקבל כי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{df}=6-1-2=3} . שימו לב כי מספר דרגות החופש כאן שונה ממספר דרגות החופש בבדיקת השערת אי תלות.
חישוב ערך ה-p מעלה כי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle p\mbox{-value}=0.1537} . בהנחה שקבענו מראש כי רמת המובהקות של המבחן היא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha=0.05} לא נדחה את השערת האפס, ונסיק כי לא נצפו הבדלים בהעדפות בין גברים ונשים.
ראו גם
קישורים חיצוניים
- מבחן כי בריבוע, באתר MathWorld (באנגלית)
הערות שוליים
- ↑ Karl Pearson, On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling, Philosophical Magazine, 5 50, 1900, עמ' 157–175 doi: doi:10.1080/14786440009463897
- ↑ Agresti, Alan, 2, An Introduction to Categorical Data Analysis, Hoboken, New Jersey: JohnWiley & Sons, Inc., 2007, עמ' 37-38, מסת"ב 978-0-471-22618-5
מבחן כי בריבוע34873844Q1071004