טווח יציב (תורת החוגים)
בתורת החוגים, טווח יציב הוא ערך מספרי המותאם לחוג, ומהווה כימות אריתמטי לתכונות של קבוצות יוצרים. הטווח היציב הוגדר על ידי היימן בס ב-1960, על-מנת למדוד את היציבות של חבורות המטריצות ההפיכות מעל חוג בהקשר לתורת K שלו.
אם לחוג אנדומורפיזמים של מודול יש טווח יציב 1, אז המודול ניתן לצמצום: אם ו- בעל טווח יציב 1, אז . מכאן אפשר להסיק שמעל חוג בעל טווח יציב 1, כל מודול פרויקטיבי נוצר סופית ניתן לצמצום.
הגדרה
הטווח היציב של חוג R שווה למספר המינימלי n שעבורו, לכל שעבורם , קיימים כך ש-; אם קיים כזה. הגרסה הימנית של הגדרה זו מביאה לאותו ערך מספרי. את הטווח היציב של R מסמנים ב-.
דוגמאות
לכל שדה ולכל חוג קומוטטיבי מקומי יש טווח יציב 1. הטווח היציב של חוג המספרים השלמים הוא 2. הטווח היציב של חוג קומוטטיבי נתרי אינו עולה ביותר מ-1 על ממד קרול שלו. הטווח היציב של חוג הפולינומים מעל שדה הוא n+1.
תכונות
לכל אידיאל I של R מתקיים . עבור , הרדיקל של ג'ייקובסון, מתקיים שוויון. במובן זה, הטווח היציב הוא תכונה של חוגים פרימיטיביים למחצה.
חוג בעל טווח יציב 1 הוא חוג סופי-דדקינד (כלומר אם ab=1 אז גם ba=1). בפרט, הטווח היציב של R הוא 1, אם שעבורם , קיים כך ש- הפיך. כל חוג -רגולרי חזק הוא בעל טווח יציב 1 [1]. לכל חוג מקומי למחצה יש טווח יציב 1. אם R בעל טווח יציב 1, אז כך גם כל חוג אנדומורפיזמים של מודול פרויקטיבי נוצר סופית מעליו; בפרט, לחוגי המטריצות מעל R יש טווח יציב 1. בכיוון ההפוך, אם ו-e אידמפוטנט של R, אז גם .
יש חסם כללי על הטווח היציב של חוגי מטריצות: אם אז .
הערות שוליים
24778857טווח יציב (תורת החוגים)