צמצום (תורת החוגים)

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

בתורת החוגים, צמצום הוא התכונה המאפשרת לצמצם מודול, כלומר להסיק מאיזומורפיזם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A \oplus B \cong A \oplus B'} את האיזומורפיזם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle B \cong B'} . צמצום עשוי להתקיים או שלא להתקיים בקטגוריה נתונה של מודולים.

צמצום ותכונות אחרות

שאלת הצמצום עשויה להתייחס לקטגוריה של מודולים, אבל גם למודול מסוים בתוכה. לצד הצמצום, אפשר ללמוד כמה תכונות אפשריות.

  • מודול מקיים את תכונת ההצבה אם לכל שני מחוברים ישרים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle B,C} של מודול, שהמשלים של שניהם איזומורפי ל-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} , יש משלים משותף (היינו, אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle M = A' \oplus B = A'' \oplus C} ו-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A',A'' \cong A} , אז יש תת-מודול הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_0 \leq M} כך ש-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle M = A_0 \oplus B = A_0 \oplus C} ).
  • מודול מקיים את תכונת הצמצום, אם אפשר לצמצם אותו בכל איזומורפיזם של מודולים (כלומר אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A \oplus B \cong A \oplus B'} אז הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle B \cong B'} ).
  • מודול הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} מקיים את תכונת הצמצום הפנימי אם בכל זוג פירוקים שלו הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A = N\oplus K = N' \oplus K'} שבו הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle N \cong N'} , גם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle K \cong K'} .
  • מודול הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} הוא סופי-דדקינד אם לא ייתכן ש- אלא אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X = 0} . (תכונה זו נקראת כך על-פי ההגדרה של דדקינד לקבוצה סופית).

התכונות המנויות לעיל מסודרות באופן היררכי: מתכונת ההצבה נובע צמצום; מצמצום נובע צמצום פנימי; ומצמצום פנימי נובעת סופיות-דדקינד.

תכונות הצמצום וההצבה עוברות למחוברים ישרים ולסכומים ישרים סופיים (כלומר, סכום ישר סופי הוא בעל תכונות אלה אם ורק אם כל המחוברים מקיימים אותן).

תכונות ההצבה והצמצום הפנימי, וכן סופיות-דדקינד, תלויות רק בחוג האנדומורפיזמים של המודול: מודול הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle M} מקיים את תכונת ההצבה אם ורק אם הטווח היציב של חוג האנדומורפיזמים הוא 1. מודול מקיים את תכונת הצמצום הפנימי אם ורק אם חוג האנדומורפיזם שלו מקיים אותה כמודול מעל עצמו. מודול הוא סופי-דדקינד אם ורק אם חוג האנדומורפיזמים שלו הוא סופי-דדקינד (אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle ab=1} אז הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle ba=1} ).

ארבע התכונות מתלכדות עבור מודולים אינג'קטיביים (ואף לכל מודול קוואזי-אינג'קטיבי). שלוש התכונות הראשונות מתלכדות אם המודול מקיים את תכונת ההחלפה הסופית.

תכונת ההצבה

כל מודול פשוט (ולכן כל סכום ישר של מספר סופי של מודולים פשוטים) הוא בעל תכונת ההצבה. מודול הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle M} מקיים את תכונת ההצבה אם ורק אם הטווח היציב של חוג האנדומורפיזמים הוא 1. מכאן אפשר להסיק שמעל חוג בעל טווח יציב 1, כל מודול פרויקטיבי נוצר סופית הוא בעל תכונת ההצבה. מודול אי-פריד המקיים את תכונת ההחלפה הסופית מקיים גם את תכונת ההצבה.

אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle R} חוג קומוטטיבי נתרי מקומי למחצה, אז לכל מודול נוצר סופית מעליו יש תכונת ההצבה.

צמצום

לכל שני מודולים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle B,C} , אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle P = B\oplus C \oplus B \oplus C \oplus \cdots} אז ; וכמובן אי-אפשר לצמצם את הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle P} . דוגמה זו (המכונה "הטריק של איילנברג") מראה שתכונת הצמצום, אם היא מתקיימת, מוגבלת למודולים נוצרים סופית.

מעל תחום דדקינד, כל מודול נוצר סופית אפשר לצמצם. מאידך, יש תחומים קומוטטיביים בעלי ממד קרול 2 עם מודולים פרויקטיביים נוצרים סופית שאינם ניתנים לצמצום.

בחוג אידיאלים חופשיים, החוג ניתן לצמצום (כמודול מעל עצמו).

צמצום פנימי

חוג הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle R} מקיים את תכונת הצמצום הפנימי כמודול מעל עצמו, אם ורק אם לכל שני אידפוטנטים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle e, e'} , אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle Re\cong Re'} (כמודולים) אז הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle R(1-e) \cong R(1-e')} (תכונה זו סימטרית ביחס להחלפת ימין ושמאל). מודול הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle M} שחוג האנדומורפיזמים שלו רגולרי פון-נוימן מקיים את תכונת הצמצום הפנימי, אם ורק אם חוג האנדומורפיזמים רגולרי ליחידות (ע"ש).

מקורות

  • A Crash Course on Stable Range, Cancellation, Substitution and Exchange, T. Y. Lam.
הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0

28444713צמצום (תורת החוגים)