אקסיומות ההסתברות

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

בתורת ההסתברות, אקסיומות ההסתברות הן תנאים שאנו דורשים כי פונקציה כלשהי תקיים כדי שנוכל לראות אותה כמתארת הסתברויות. הבנייה המקובלת של תורת ההסתברות, וזו המוצגת בערך זה, מבוססת על אקסיומות קולמוגורוב (על שם המתמטיקאי אנדריי קולמוגורוב שניסח אותן לראשונה), אם כי ישנן אקסיומטיזציות נוספות, דוגמת זו של קוקס. בצורה אינטואיטיבית האקסיומות מנוסחות כך: אחד מכל המאורעות האפשריים חייב להתקיים, וההסתברות שיתרחש מאורע המורכב מכמה מאורעות זרים שווה לסכום ההסתברויות של המאורעות הללו בנפרד. אלו הן דרישות שנחשבות הגיוניות כאשר מנסים לנסח בצורה פורמלית את הרעיון האינטואיטיבי של הסתברות.

ניסוח פורמלי

יהא מרחב הסתברות. הקבוצה נקראת מרחב המדגם וכמו כן אנו דורשים כי (שדה המאורעות) תהא סיגמא-אלגברה. מהפונקציה אנו דורשים את התכונות הבאות:

  1. לכל מתקיים . דרישה זו נובעת מכך שאנו תופסים הסתברות של מאורע בתור מספר ממשי בין הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0} ל-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1} , ומצפים שלכל מאורע שמעניין אותנו (כלומר, ששייך לסיגמא-אלגברה) תהיה הסתברות מוגדרת וקבועה.
  2. הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(\Omega)=1} . דרישה זו נובעת מכך שאנו מצפים שלפחות אחד מהאירועים הבסיסיים שבמרחב המדגם יתקיים תמיד, בכל ניסוי שנערוך.
  3. לכל סדרה של מאורעות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle E_1,E_2,\dots} שאיבריה מקיימים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ E_i\cap E_j=\emptyset} לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ i\ne j} (כלומר זרים בזוגות) מתקיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle P\left( \bigcup_{i=1}^\infty E_i \right) = \sum_{i=1}^\infty P(E_i)} . תכונה זו מכונה סיגמא-אדיטיביות ופירושה שבהינתן אוסף בן מנייה של מאורעות זרים, ההסתברות של איחודם (כלומר, ההסתברות שיתרחש אחד מהאירועים הבסיסיים שבהם) שווה לסכום של ההסתברויות שלהם בנפרד.
  • בקצרה אפשר לנסח זאת כך: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle P \colon \mathcal{F} \to [0,1]} היא פונקציית מידה. מידה זו נקראת "מידת הסתברות" (Probability Measure).

תוצאות הנובעות מהאקסיומות

מהאקסיומות הללו נובעות מספר תוצאות שימושיות. רובן הן תכונות כלליות של פונקציית מידה ואפשר למצוא פירוט עליהן בערך על תורת המידה, אך חלקן ייחודיות להסתברות.

  • הסתברות של מאורע משלים: תוצאה מיידית מהאקסיומות היא שעבור מאורע כלשהו מתקיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(E^c)=1-P(E)} . כלומר, ההסתברות שהמאורע לא יתקיים (ולכן משלימו ביחס ל- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega} יתקיים) שווה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1} פחות ההסתברות שהוא כן יתקיים. כדי להיווכח בתכונה זו די לראות כי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle E \cap E^c = \emptyset, E \cup E^c = \Omega} ולכן על פי האקסיומות השנייה והשלישית נקבל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1 = P(\Omega) = P(E \cup E^c) = P(E) + P(E^c)} . מכאן נובע ש-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(\emptyset) = P(\Omega^c) = 0} .
  • מונוטוניות: אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A \subseteq B} מאורעות, אז הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(A) \leq P(B)} . אכן, ניתן לרשום ומכיוון שזהו איחוד זר לקבל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(B) = P(A) + P(B \setminus A) \geq P(A)} כי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(B \setminus A) \geq 0} .
  • תוצאה שימושית היא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(A \setminus B) = P(A) - P(A \cap B)} . תוצאה זו ניתן לראות כאשר שמים לב כי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A = (A \setminus B) \cup (A \cap B)} וזהו איחוד זר.
  • תוצאה נוספת מהאקסיומות היא שלכל שני מאורעות (לא בהכרח זרים) הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A,B} יתקיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(A\cup B) = P(A) + P(B) - P(A \cap B)} . תוצאה זו היא מקרה פרטי של "עקרון ההכלה וההפרדה".
כדי לראות תכונה זו נשים לב כי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle P(A\cup B)=P\left((A \setminus (A\cap B)) \cup (B \setminus (A \cap B)) \cup (A \cap B)\right)} וזהו איחוד זר.
כעת נקבל: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ P(A\cup B)=P(A)-P(A\cap B)+P(B)-P(A\cap B)+P(A\cap B)} ומכאן קיבלנו את התוצאה.
הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0

29648436אקסיומות ההסתברות