AlphaGo
תבנית תוכנה ריקה AlphaGo היא תוכנת מחשב, שמשחקת במשחק הקופסה Go. התוכנה פותחה ע״י חברת DeepMind Technologies, שבהמשך נרכשה ע״י חברת חברת גוגל. פיתוח התוכנה החל בשנת 2014.[1] מאז יוצרו מספר גרסאות של התוכנה, בין היתר כאלו שהתחרו מול שחקני Go מקצועיים. למשל גרסה בשם Master שזכתה להצלחה רבה (אנ׳). לאחר שפרש ממשחק תחרותי, AlphaGo Master הוחלף על ידי גרסה חזקה יותר המכונה AlphaGo Zero (אנ׳) אשר הייתה אוטודידקטית לחלוטין – כלומר למדה לשחק מבלי ניתוח של משחקים אנושיים. AlphaGo Zero הוחלפה מאוחר יותר בתוכנת AlphaZero, ששיחקה משחקים נוספים מלבד Go, כולל שחמט ושוגי. בשנת 2019 יצאה גרסה מתקדמת יותר בשם MuZero (אנ׳) שביכולתה ללמוד לשחק באותם משחקים מבלי לדעת מראש את כללי המשחק.
AlphaGo משתמשת באלגוריתם חיפוש מונטה קרלו בעצים (אנ׳) על מנת למצוא את מהלכיה על סמך ידע שנרכש בעבר תוך שימוש בלמידת מכונה שנשענת על רשת עצבית מלאכותית. הרשת העצבית מאומנת לזהות את המהלכים הטובים ביותר ואת אחוזי הזכייה של המהלכים הללו. רשת עצבית זו משפרת את יעילות החיפוש בעץ, וכתוצאה מכך בחירת מהלכים נעשית טובה יותר מאיטרציה לאיטרציה.
באוקטובר 2015, תוכנת AlphaGo התחרתה מול שחקן ה Go פאן חוי (אנ׳) וניצחה. בכך הפכה התוכנה לראשונה שהצליחה לנצח שחקן Go מקצועי ללא פיצוי (אנ׳) ועל לוח משחק מלא בגודל 19 על 19. במרץ 2016, התוכנית ניצחה את שחקן ה-Go המקצועי לי סדול (אנ׳) בתחרות שכללה חמישה משחקים (AlphaGo versus Lee Sedol) בתוצאה של 1–4. בכך הפכה התוכנה לראשונה שהצליחה לנצח שחקן Go בדרגת דאן 9 ללא פיצוי. על ניצחון זה צולם סרט בשם AlphaGo .[2] ב 22 בדצמבר 2016, הניצחון של AlphaGo נבחר ע״י Science כאחת מפריצות השנה.
במאי של 2017, הגרסה AlphaGo Master ניצחה עם תוצאה של 1–2 את השחקן קה גיי (אנ׳) שנכון לקיום המשחק דורג ראשון בעולם. בעקבות ניצחון זה העניקה התאחדות הגו הסינית (Chinese Weiqi Association) לתוכנה דרגת דאן 9. לאחר הניצחון על קה גיי, הושקה AlphaGo Zero שלומדת לשחק באופן אוטודידקטי. AlphaGo Zero השיג ניצחון 100–0 מול גרסת ה Master. יורשו של AlphaGo Zero בשם AlphaZero נתפס נכון לשנת 2019 כשחקן בעל הדירוג הגבוה ביותר ב Go ואולי גם בשחמט.[3][4]
היסטוריה
Go הוא משחק בעל כמות המשכים אפשריים גדולה מאוד אחרי כל מהלך. עובדה זו מקשה מאוד על המחשבים ללמוד את המשחק ע״י מתודות למידת המכונה המוכרות כמו גיזום אלפא-ביתא ושיטת היוריסטיקה.
כמעט שנתיים לאחר שDeepBlue, מחשב של יבמ ניצח את אלוף העולם בשחמט, גארי קספרוב, בשנת 1997, תוכנות המחשב החזקות ביותר שישיחקו Go הגיעו רק לרמה חובבנית (דאן 5 ומטה) ועדיין לא יכלו לנצח שחקני Go מקצועיים ללא פיצוי בתחילת המשחק.
בשנת 2012, התוכנה Zen הצליחה לנצח פעמיים את מאסאקי טאקאמיה (אנ׳) שדירוגו היה דאן 9. עם זאת ניצחון זה הושג עם פיצוי של 4–5 אבנים לטובת התוכנה. בשנת 2013 התוכנה Crazy Stone ניצחה את יושיאו לשידא (אנ׳) שהיה בעל דאן 9. גם במקרה זה הניצחון הושג עם פיצוי של 4 אבנים לטובת התוכנה.
המשחק מול פאן חוי
באוקטובר של שנת 2015, הגרסה הקיימת של AlphaGo ניצחה 0–5 את אלוף אירופה, פאן חוי (Fan Hui). דירוגו נכון לזמן המשחק היה דאן 2 (מתוך 9). זאת הייתה הפעם הראשונה בה תוכנת מחשב ניצחה שחקן Go מקצועי על לוח משחק מלא וללא פיצוי לטובת התוכנה. פרסום תוצאות המשחק התרחש רק בינואר 2016, במקביל לפרסום מאמר בכתב העת המדעי Nature המתאר את אלגוריתם הלמידה בו השתמשה התוכנה.[5]
המשחק מול לי סדול
בשנת 2016, בתאריכים 9, 10, 12, 13 ו-15 במרץ, במלון ארבע העונות בסיאול, נערכו חמישה משחקים בין AlphaGo לבין שחקן ה Go הדרום קוראני המקצועי בשם לי סדול. נכון לזמן התחרות דירוגו היה דאן 9 (מתוך 9). המשחקים שודרו בשידור חי בכלי תקשורת רבים. AlphaGo ניצחה את לי בארבעת מתוך חמשת המשחקים: בשלושת המשחקים הראשונים ובמשחק החמישי. במשחק הרביעי הצליח לי לגבור על AlphaGo. המשחק היחיד בו ניצח לי הפך אותו לאדם היחיד בעולם שניצח אי-פעם את AlphaGo מתוך כל 74 משחקיה הרשמיים.
AlphaGo רצה על גבי הענן של גוגל תוך שימוש בשרתים הממוקמים בארצות הברית. המשחק עשה שימוש בחוקים סיניים עם 7.5 נקודות קומי (אנ׳), ולכל צד היו שעתיים של חשיבה בתוספת שלוש תקופות ביויומי (אנ׳) של 60 שניות. הגרסה של AlphaGo ששיחקה נגד לי השתמשה בכמות מחשוב דומה כמו שהייתה בשימוש במשחק מול פאן חוי. AlphaGo לא אומנה באופן ספציפי לנצח את לי (כלומר לא אומנה ספציפית נגד סגנון המשחק של לי), אלה אומנה באופן כללי, ללא מטרה ספציפית לנצח אדם ספציפי.
הפרס בתחרות היה מיליון דולר. מכיוון ש AlphaGo זכתה בארבעה מתוך חמשת המשחקים בסדרה, הפרס נתרם לעמותות, כולל יוניסף. לי קיבל 150 אלף דולר על השתתפות בכל חמשת המשחקים ותוספת של 20 אלף דולר עבור זכייתו במשחק 4.
ביוני 2016, בכנס שהתקיים באחת האוניברסיטאות בהולנד, חשף אג'ה הואנג, חבר בצוות DeepMind, כי הם זיהו ותיקנו את נקודת התורפה של AlphaGo שגרמה לתוכנה להפסיד ללי במהלך המשחק הרביעי ביניהם.
60 משחקים ברשת
ב־29 בדצמבר 2016, חשבון חדש בשרת תיגי׳ם (אנ׳) בשם "מגיסטר" (שהוצג כ 'מגיסט' בגרסה הסינית של השרת) מדרום קוריאה החל לשחק משחקים עם שחקנים מקצועיים. החשבון שינה את שמו ל- "Master" ב־30 בדצמבר, ואז עברה לשרת FoxGo ב -1 בינואר 2017. ב -4 בינואר אישרה DeepMind כי "Magister" ו- "Master" הם חשבונות בהם משחקת הגרסה המעודכנת של AlphaGo, הנקראת AlphaGo Master. החל מה -5 בינואר 2017, AlphaGo Master קבע שיא של 60 ניצחונות ו- 0 הפסדים, כולל שלושה ניצחונות על השחקן בעל הדירוג הגבוה ביותר נכון לזמן המשחק, קה גיי. לאחר שנודע על ההפסדים של גיי לתוכנת המאסטר, שחקן ה Go גו לי (אנ׳) הציע סכום של 100,000 יואן (14,400 דולר) לשחקן האנושי הראשון שיכול להביס את מאסטר.
במהלך שישים המשחקים ברשת, המאסטר שיחק בקצב של 10 משחקים ביום. רבים חשדו במהרה שמדובר בשחקן AI בגלל מנוחה מועטה בין המשחקים. יריביו כללו אלופי עולם רבים . כל 60 המשחקים פרט לאחד היו משחקים מהירים עם שלושה ביויומיים באורך 20 או 30 שניות. המאסטר הציע להאריך את הביויומי לדקה כאשר שיחק עם ני ווייפינג בהתחשב בגילו. לאחר שניצח במשחקו ה -59, מאסטר חשף את עצמו בחדר הצ'אט.
לאחר השלמת המשחקים הללו, מייסד שותף של Google DeepMind, דמיס חסביס, אמר: "אנו מצפים לשחק בהמשך כמה משחקים רשמיים באורך מלא בשיתוף ארגוני Go ומומחים".
מומחי Go התרשמו מביצועי התוכנית וסגנון המשחק הלא אנושי שלה; קה גיי הצהיר כי "אחרי שהאנושות השקיעה אלפי שנים בשיפור הטקטיקה שלה, מחשבים אומרים לנו שבני אדם טועים לחלוטין ... הייתי מרחיק לכת ואומר שאף בן אדם לא נגע בקצה האמת של Go".
פסגת גו של 2017
בתחרות הגו שנערכה בווז'ן במאי 2017, AlphaGo Master שיחק שלושה משחקים עם Ke Jie, השחקן המדורג במקום הראשון בעולם, כמו גם שני משחקים עם כמה שחקנים מקצועיים מובילים: משחק נגד זוג שחקנים ומשחק נגד צוות של חמישה שחקנים אנושיים.[6]
Google DeepMind הציעה פרס של 1.5 מיליון דולר לזוכה בטורניר שלושת המשחקים בין Ke Jie ו- Master בעוד שהצד המפסיד יקבל 300,000 דולר.[7][8] מאסטר ניצח את שלושת המשחקים נגד Ke Jie,[9][10] ולאחריהם הוענקה דרגת דאן 9 (הדרגה הגבוה ביותר ב Go) מקצועי על ידי התאחדות הגו הסינית ל AlphaGo.[11]
לאחר שניצחה את שלושת המשחקים שלה מול Ke Jie, שחקן ה- Go העולמי המדורג ביותר, הוכרז כי AlphaGo פורש, ו- DeepMind פרקה את הצוות שעבד על המשחק כדי להתמקד במחקר AI בתחומים אחרים.[12] עם זאת, לאחר הפסגה פרסם צוות DeepMind כ- 50 משחקי AlphaGo נגד עצמו באורך מלא, כמתנה לקהילת שחקני ה- Go.[13]
AlphaGo Zero ו- AlphaZero
ב -19 באוקטובר 2017 הצוות של AlphaGo פרסם מאמר בכתב העת Nature, בו הציג את AlphaGo Zero, גרסה ללא נתונים אנושיים וחזקה יותר מכל גרסה קודמת שמנצחת אלוף אנושי. בכך שהיא שיחקה משחקים נגד עצמה, AlphaGo Zero עלתה על כוחה של AlphaGo Lee תוך שלושה ימים בכך שניצח 100 מתוך 100 משחקים, הגיעה לרמה של מאסטר בגו תוך 21 יום, וניצחה את כל הגרסאות הישנות תוך 40 יום.[14]
במאמר שפורסם ב- arXiv ב -5 בדצמבר 2017, טען צוות DeepMind כי היא הכליל את גישתו של AlphaGo Zero לאלגוריתם יחיד של AlphaZero, שהשיג תוך 24 שעות רמה של משחק על אנושי במשחקי השחמט, השוגי ו- Go על ידי ניצחון על התוכנות המובילות בתחומיהן Stockfish, Elmo, ו- AlphaGo Zero.
כלי הוראה
ב־11 בדצמבר 2017, פרסם צוות DeepMind כלי להוראת גו שמבוסס על AlphaGo באתר האינטרנט שלה.[15] הכלי מציג ללומדים את הסתברות הניצחון שמייצג על מהלך במשחק כפי שחושב על ידי AlphaGo Master .[16] כלי ההוראה אוסף 6,000 מהלכי Go מ -230,000 משחקים אנושיים שכל אחד מהם נותח עם 10,000,000 סימולציות על ידי AlphaGo Master. רבים מהמהלכים כוללים הצעות למהלך אנושי.
גרסאות
גרסה מוקדמת של AlphaGo נבדקה על חומרה עם מספר שונה של מעבדים ו- GPUs, הפועלים במצב אסינכרוני או מבוזר. שתי שניות של זמן חשיבה ניתנו לכל מהלך. ציוני מד-כושר (דירוגי Elo) המתקבלים מפורטים להלן. כצפוי, במשחקים בהם יש יותר זמן לכל שחקן, משיגה התוכנה דירוגים גבוהים יותר.
תְצוּרָה | מספר | מספר המעבד | מספר GPU | דירוג Elo |
---|---|---|---|---|
יחיד עמ ' 10–11 | 40 | 48 | 1 | 2,181 |
יחיד | 40 | 48 | 2 | 2,738 |
יחיד | 40 | 48 | 4 | 2,850 |
יחיד | 40 | 48 | 8 | 2,890 |
מופץ | 12 | 428 | 64 | 2,937 |
מופץ | 24 | 764 | 112 | 3,079 |
מופץ | 40 | 1,202 | 176 | 3,140 |
מופץ | 64 | 1,920 | 280 | 3,168 |
במאי 2016 חשפה גוגל חומרה קניינית משלה המכונה "יחידות עיבוד טנזור" או TPU. לפי הפרסום, רכיבים אלה כבר יושמו לשימוש במספר פרויקטים פנימיים בגוגל, כולל המשחק AlphaGo נגד לי סדול.[17][18]
בפסגת העתיד של Go במאי 2017, DeepMind חשפה כי הגרסה של AlphaGo ששימשה בפסגה זו הייתה AlphaGo Master,[19][20] וגילתה שהיא מדדה את חוזק הגרסאות השונות של התוכנה. AlphaGo Lee, הגרסה המשמשת נגד Lee, יכולה לנצח את AlphaGo Fan, הגרסה ששימשה במשחקים נגד פן חוי.[21]
גרסאות | חוּמרָה | דירוג Elo | תַאֲרִיך | תוצאות |
---|---|---|---|---|
אוהד AlphaGo | 176 GPUs,[14] מופצים | 3,144 [23] | אוקטובר 2015 | 5: 0 נגד פאן הוי |
AlphaGo Lee | 48 TPUs, מופץ | 3,739 | מרץ 2016 | 4: 1 נגד לי סדול |
מאסטר AlphaGo | 4 TPU, מכונה אחת | 4,858 | מאי 2017 | 60: 0 נגד שחקנים מקצועיים; </br> העתיד של פסגת גו |
AlphaGo Zero (40 חסימות) | 4 TPU, מכונה אחת | 5,185 | אוקטובר 2017 | 100: 0 נגד AlphaGo Lee
89:11 נגד AlphaGo Master |
AlphaZero (20 חסימות) | 4 TPU, מכונה אחת | 5,018 | דצמבר 2017 | 60:40 נגד AlphaGo Zero (20 חסימות) |
אַלגוֹרִיתְם
החל משנת 2016, האלגוריתם של AlphaGo משתמש בשילוב של טכניקות למידת מכונה וחיפוש עצים, בשילוב אימונים נרחבים, הן ממשחק אנושי והן ממחשב. היא משתמשת בחיפוש עצים בשיטת מונטה קרלו, המונחית על ידי "רשת ערכים" ו"רשת מדיניות", שניהם מיושמים באמצעות טכנולוגיית רשת עצבית עמוקה.[24][25] כמות מוגבלת של עיבוד מקדים של זיהוי תכונות ספציפיות למשחק (למשל, כדי להדגיש אם מהלך תואם לתבנית nakade) מוחל על הקלט לפני שהוא נשלח לרשתות העצביות.[25]
הרשתות העצביות של המערכת הושקו בתחילה על בסיס מומחיות משחק אנושית. בתחילה הוכשרה AlphaGo לחקות משחק אנושי על ידי ניסיון להתאים למהלכים של שחקנים מומחים ממשחקים היסטוריים מוקלטים, תוך שימוש במאגר של כ -30 מיליון מהלכים.[26] לאחר שהגיעה לרמה מסוימת של יכולת, היא הוכשרה בהמשך לשחק מספר רב של משחקים מול עצמה, תוך שימוש בלמידת חיזוק לשיפור המשחק שלה.[24] כדי להימנע מבזבוז זמנו של היריב "מטעמי כבוד", התוכנה מתוכנתת להיכנע אם הערכת ההסתברות שלה לזכות נופלת מתחת לסף מסוים; למשחק נגד לי, סף הכניעה נקבע להסתברות ניצחון של 20%.[27]
סגנון המשחק
טובי מאנינג, שופט המשחק של AlphaGo vs. Fan Hui, תיאר את סגנון המשחק של התוכנה כ"שמרני".[28] סגנון המשחק של AlphaGo תומך באופן מובהק בהסתברות גדולה יותר לזכות בפחות נקודות לעומת בהסתברות נמוכה יותר לזכות בנקודות רבות יותר.[29] האסטרטגיה שלה למקסם את הסיכוי שלה לזכות נבדלת ממה שהשחקנים האנושיים נוטים לעשות שהוא למקסם את הרווחים הטריטוריאליים, ומסבירה כמה מהמהלכים המוזרים למראה.[30] גישה זו מובילה למהלכי פתיחה רבים שמעולם או לעיתים רחוקות נעשו על ידי בני אדם, תוך הימנעות מוחלטת ממהלכי פתיחה רבים מהשורה השנייה ששחקנים אנושיים אוהבים לבצע. התוכנה נוטה להשתמש shoulder hits, במיוחד אם היריב מרוכז יתר על המידה.[דרוש מקור]
תגובות לניצחון ב-2016
קהילת הבינה המלאכותית
הניצחון של AlphaGo במרץ 2016 היה אבן דרך מרכזית במחקר הבינה המלאכותית.[31] לפני כן, Go נחשב כבעיה קשה בלמידת מכונה שהייתה צפויה להיות מחוץ להישג יד לטכנולוגיה של אז.[31][32][33] רוב המומחים חשבו שתוכנית Go חזקה כמו AlphaGo נמצאת במרחק של חמש שנים לפחות;[34] חלק מהמומחים חשבו שייקח לפחות עשור נוסף עד שהמחשבים ינצחו את אלופי הגו.[35][36] רוב הצופים בתחילת המשחקים ב -2016 ציפו כי לי ינצח את AlphaGo.[31]
עם משחקים כמו דמקה (ש"נפתרה" על ידי הצוות שפיתח את צ'ינוק), שחמט, וכעת גם גו בהם מחשבים הפכו בלתי מנוצחים, ניצחונות במשחקי לוח פופולריים כבר לא יכולים לשמש אבני דרך מרכזיות לבינה מלאכותית באופן שבו היו בעבר. מוריי קמפבל, מהיוצרים של Deep Blue כינה את הניצחון של AlphaGo "סוף עידן ... משחקי לוח הם פחות או יותר פתורים וזה הזמן לעבור הלאה."[31]
בהשוואה ל- Deep Blue או Watson, האלגוריתמים הבסיסיים של AlphaGo הם כלליים יותר ועשויים להוות עדות לכך שהקהילה המדעית מתקדמת לעבר בינה מלאכותית כללית. יש פרשנים שמאמינים כי הניצחון של AlphaGo מהווה הזדמנות טובה לחברה להתכונן להשפעה עתידית אפשרית של מכונות בעלות אינטליגנציה כללית. כפי שציין היזם גיא סוטר, AlphaGo יודעת רק לשחק ב- Go ואינה מחזיקה באינטליגנציה למטרות כלליות; "[זה] לא יכול פשוט להתעורר בוקר אחד ולהחליט שזה רוצה ללמוד להשתמש בנשק חם."[31] חוקר ה- AI סטיוארט ראסל אמר כי מערכות בינה מלאכותית כמו AlphaGo התקדמו מהר יותר והפכו לחזקות מהצפוי, ולכן אנחנו צריכים לפתח שיטות להבטיח שהם "יישארו תחת שליטה אנושית".[37] מספר חוקרים, כמו סטיבן הוקינג, הזהירו (במאי 2015 לפני המשחקים) כי חלק מהבינה המלאכותית המשפרת את עצמה עשויה להשיג אינטליגנציה כללית, ולהוביל להשתלטות בלתי צפויה של AI;חוקרים אחרים לא מסכימים: מומחה ה- AI, ז'אן גבריאל גנסקיה, סבור ש"דברים כמו 'שכל ישר' ... אולי לעולם לא יינתנו לשחזור [אצל מכונות]",[38] ואומר "אני לא מבין למה לדבר על על פחדים. להפך, זה מעלה תקווה בתחומים רבים כמו בריאות וחקר החלל."[37] מדען המחשבים ריצ'רד סאטון אמר" אני לא חושב שאנשים צריכים לפחד... אבל אני חושב שאנשים צריכים לשים לב." [39]
בסין, AlphaGo היה רגע המעבר שעזר לשכנע את ממשלת סין לתעדף ולהגדיל באופן דרמטי את המימון לבינה מלאכותית.[40]
בשנת 2017 צוות AlphaGo בDeepMind קיבל את מדליית IJCAI מרווין מינסקי המיועדת להישגים יוצאי דופן בבינה מלכותית. "AlphaGo הוא הישג נפלא, ודוגמה מושלמת למה שמדליית מינסקי נועדה לקדם", אמר פרופסור מייקל ווולדריג ', יו"ר ועדת פרסי IJCAI. "מה שהרשים במיוחד את IJCAI היה ש- AlphaGo משיגה את מה שהיא עושה באמצעות שילוב מבריק של טכניקות AI קלאסיות, כמו גם טכניקות לימוד מכונה משוכללות ש- DeepMind קשורה אליהן כל כך. זו הפגנה עוצרת נשימה של AI עכשווי, ואנחנו שמחים להיות מסוגלים להכיר בו בפרס זה." [41]
קהילת הגו
גו הוא משחק פופולרי בסין, ביפן ובקוריאה ובמשחקים ב-2016 צפו בהערכה מאה מיליון איש ברחבי העולם.[31][42] שחקני Go מובילים רבים אפיינו את המהלכים הלא שגרתיים של AlphaGo כמהלכים שנראים מפוקפקים בהתחלה, אך היו הגיוניים בדיעבד:[35] "כל שחקני ה- Go מלבד הטובים ביותר מעצבים את סגנונם על ידי חיקוי של שחקני הצמרת. נראה כי ל- AlphaGo יש מהלכים מקוריים לחלוטין שהוא יוצר בעצמו. " נראה כי באופן מפתיע, AlphaGo התחזקה הרבה יותר, אפילו בהשוואה למשחק באוקטובר 2015 ,[43] שם מחשב ניצח שחקן גו מקצועי לראשונה ללא יתרון (חוקים רגילים). יום אחרי התבוסה הראשונה של לי, ג'ונג אהרם, כתב הגו הראשי של אחד העיתונים היומיים הגדולים של דרום קוריאה, אמר "אמש היה קודר מאוד ... אנשים רבים שתו אלכוהול." [44] התאחדות הגו של דרום קוריאה (Korea Baduk Association), העניקה ל- AlphaGo תואר דאן 9 של כבוד "על הצגת כישורים מבריקים, יצירתיות ועל קידום המשחק".[45]
קה גיי הסיני, צעיר בן 18 שהוכר כשחקן הגו הטוב ביותר בעולם באותה תקופה,[46][47] טען בתחילה כי הוא יצליח לנצח את אלפא גו, אך סירב לשחק נגדו מחשש שהוא "יעתיק את הסגנון שלי". כשהתקדמו המשחקים, קי ג'י חזר בו ואמר כי "סביר ביותר שאוכל להפסיד" לאחר ניתוח שלושת המשחקים הראשונים,[48] אך חזר לו הביטחון לאחר ש- AlphaGo הראה חולשות במשחק הרביעי.[49]
טובי מאנינג, שופט המשחק של אלפא-גו נגד פאן חוי, והג'ין לי, מזכ"ל הפדרציה הבינלאומית של גו, סבורים כי בעתיד, שחקני גו יקבלו עזרה ממחשבים כדי ללמוד מה הם עשו לא נכון במשחקים וכדי לשפר את הכישורים שלהם.
לאחר המשחק השני לי אמר שהוא "ללא מילים": "כבר מתחילת המשחק, לא הצלחתי להשיג יתרון אפילו לא במהלך אחד. זו הייתה שליטה מוחלטת של AlphaGo." [50] לי התנצל על הפסדיו, ואמר לאחר המשחק השלישי ש"הערכתי לא נכון את היכולות של AlphaGo והרגשתי חסר אונים."[31] הוא הדגיש כי התבוסה היא "תבוסתו של לי ס'דול ולא תבוסה של האנושות".[38][51] לי אמר שהפסד בסופו של דבר למכונה היה "בלתי נמנע" אך ציין כי "רובוטים לעולם לא יבינו את יופיו של המשחק באותה צורה שאנחנו בני האדם מבינים." לי כינה את ניצחונו במשחק הרביעי כ"זכייה יקרה מפז שלא הייתי מחליף בשום דבר".
מערכות דומות
פייסבוק גם עבדה על מערכת משלה שמשחקת גו שנקראת "יער אפל", שגם היא מבוססת בין השאר על למידת מכונה[25] אף על פי שהמערכת של פייסבוק ניצחה תוכנות גו אחרות במחשב, נכון לתחילת 2016 היא עדיין לא ניצחה שחקן אנושי מקצועי.[52]
מערכת שפותחה בשיתוף אוניברסיטת טוקיו, הפסידה 2–1 בנובמבר 2016 למאסטר ה- Go צ'ו צ'יקון, המחזיק בשיא המספר הגדול ביותר של זכיות גו ביפן.[53][54]
מאמר שפורסם ב- ב-2018 ציין שהתשתית של AlphaGo משמשת כבסיס למערכת חדשה לתכנון והערכה של מולקולות לשימוש כתרופות פוטנציאליות.[55]
קישורים חיצוניים
הערות שוליים
- ^ Timeline of AlphaGo - Timelines, timelines.issarice.com (באנגלית)
- ^ AlphaGo Movie, AlphaGo Movie (באנגלית)
- ^ Pete (Pete), AlphaZero Crushes Stockfish In New 1,000-Game Match, Chess.com (באנגלית אמריקאית)
- ^ David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play, Science 362, 2018-12-07, עמ' 1140–1144 doi: 10.1126/science.aar6404
- ^ David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Mastering the game of Go with deep neural networks and tree search, Nature 529, 2016-01-01, עמ' 484–489 doi: 10.1038/nature16961
- ^ "Exploring the mysteries of Go with AlphaGo and China's top players". 2017-04-10.
- ^ "World No.1 Go player Ke Jie takes on upgraded AlphaGo in May". 2017-04-10.
- ^ "Ke Jie vs. AlphaGo: 8 things you must know". 2017-05-27.
- ^ "Revamped AlphaGo Wins First Game Against Chinese Go Grandmaster". 2017-05-23.
- ^ "Google's AlphaGo Continues Dominance With Second Win in China". 2017-05-25.
- ^ "中国围棋协会授予AlphaGo职业九段 并颁发证书" (בסינית). Sohu.com. 27 במאי 2017. נבדק ב-9 בדצמבר 2017.
{{cite web}}
: (עזרה) - ^ "After Win in China, AlphaGo's Designers Explore New AI". 2017-05-27.
- ^ "Full length games for Go players to enjoy". Deepmind. נבדק ב-2017-05-28.
- ^ 14.0 14.1 "AlphaGo Zero: Learning from scratch". DeepMind official website. 18 באוקטובר 2017. נבדק ב-19 באוקטובר 2017.
{{cite web}}
: (עזרה) - ^ "AlphaGo teaching tool". DeepMind.
- ^ "AlphaGo教学工具上线 樊麾:使用Master版本" (בסינית). Sina.com.cn. 11 בדצמבר 2017. נבדק ב-11 בדצמבר 2017.
{{cite web}}
: (עזרה) - ^ McMillan, Robert (18 במאי 2016). "Google Isn't Playing Games With New Chip". The Wall Street Journal. נבדק ב-26 ביוני 2016.
{{cite news}}
: (עזרה) - ^ Jouppi, Norm (18 במאי 2016). "Google supercharges machine learning tasks with TPU custom chip". Google Cloud Platform Blog (באנגלית אמריקאית). נבדק ב-2016-06-26.
{{cite web}}
: (עזרה) - ^ "AlphaGo官方解读让三子 对人类高手没这种优势" (בסינית). Sina. 25 במאי 2017. נבדק ב-2 ביוני 2017.
{{cite web}}
: (עזרה) - ^ "各版alphago实力对比 master能让李世石版3子" (בסינית). Sina. 24 במאי 2017. נבדק ב-2 ביוני 2017.
{{cite web}}
: (עזרה) - ^ "New version of AlphaGo self-trained and much more efficient". American Go Association. 24 במאי 2017. נבדק ב-1 ביוני 2017.
{{cite web}}
: (עזרה) - ^ "【柯洁战败解密】AlphaGo Master最新架构和算法,谷歌云与TPU拆解" (בסינית). Sohu. 24 במאי 2017. נבדק ב-1 ביוני 2017.
{{cite web}}
: (עזרה) - ^ Zen computer Go program beats Takemiya Masaki with just 4 stones!, web.archive.org, 2016-02-01
- ^ 24.0 24.1 "Research Blog: AlphaGo: Mastering the ancient game of Go with Machine Learning". Google Research Blog. 27 בינואר 2016.
{{cite web}}
: (עזרה) - ^ 25.0 25.1 25.2 AlphaGo: Mastering the ancient game of Go with Machine Learning, Google AI Blog (באנגלית)
- ^ Metz, Cade (27 בינואר 2016). "In Major AI Breakthrough, Google System Secretly Beats Top Player at the Ancient Game of Go". WIRED (באנגלית אמריקאית). נבדק ב-1 בפברואר 2016.
{{cite web}}
: (עזרה) - ^ Cade Metz (13 במרץ 2016). "Go Grandmaster Lee Sedol Grabs Consolation Win Against Google's AI". Wired News. נבדק ב-29 במרץ 2016.
{{cite news}}
: (עזרה) - ^ Gibney, Elizabeth (27 בינואר 2016). "Google AI algorithm masters ancient game of Go". Nature. 529 (7587): 445–6. Bibcode:2016Natur.529..445G. doi:10.1038/529445a. PMID 26819021free
{{cite journal}}
: (עזרה)תחזוקה - ציטוט: postscript (link) - ^ John Riberio (14 במרץ 2016). "AlphaGo's unusual moves prove its AI prowess, experts say". PC World. נבדק ב-18 במרץ 2016.
{{cite news}}
: (עזרה) - ^ Chouard, Tanguy (12 במרץ 2016). "The Go Files: AI computer clinches victory against Go champion". Nature. doi:10.1038/nature.2016.19553.
{{cite journal}}
: (עזרה) - ^ 31.0 31.1 31.2 31.3 31.4 31.5 31.6 Steven Borowiec; Tracey Lien (12 במרץ 2016). "AlphaGo beats human Go champ in milestone for artificial intelligence". Los Angeles Times. נבדק ב-13 במרץ 2016.
{{cite news}}
: (עזרה) - ^ Connor, Steve (27 בינואר 2016). "A computer has beaten a professional at the world's most complex board game". The Independent. נבדק ב-28 בינואר 2016.
{{cite news}}
: (עזרה) - ^ "Google's AI beats human champion at Go". CBC News. 27 בינואר 2016. נבדק ב-28 בינואר 2016.
{{cite news}}
: (עזרה) - ^ Dave Gershgorn (12 במרץ 2016). "GOOGLE'S ALPHAGO BEATS WORLD CHAMPION IN THIRD MATCH TO WIN ENTIRE SERIES". Popular Science. נבדק ב-13 במרץ 2016.
{{cite news}}
: (עזרה) - ^ 35.0 35.1 "Google DeepMind computer AlphaGo sweeps human champ in Go matches". CBC News. Associated Press. 12 במרץ 2016. נבדק ב-13 במרץ 2016.
{{cite news}}
: (עזרה) - ^ Sofia Yan (12 במרץ 2016). "A Google computer victorious over the world's 'Go' champion". CNN Money. נבדק ב-13 במרץ 2016.
{{cite news}}
: (עזרה) - ^ 37.0 37.1 Mariëtte Le Roux (12 במרץ 2016). "Rise of the Machines: Keep an eye on AI, experts warn". Phys.org. נבדק ב-13 במרץ 2016.
{{cite news}}
: (עזרה) - ^ 38.0 38.1 Mariëtte Le Roux; Pascale Mollard (8 במרץ 2016). "Game over? New AI challenge to human smarts (Update)". phys.org. נבדק ב-13 במרץ 2016.
{{cite news}}
: (עזרה) - ^ Tanya Lewis (11 במרץ 2016). "An AI expert says Google's Go-playing program is missing 1 key feature of human intelligence". Business Insider. נבדק ב-13 במרץ 2016.
{{cite news}}
: (עזרה) - ^ Mozur, Paul (20 ביולי 2017). "Beijing Wants A.I. to Be Made in China by 2030". The New York Times. נבדק ב-11 באפריל 2018.
{{cite news}}
: (עזרה) - ^ "Marvin Minsky Medal for Outstanding Achievements in AI". International Joint Conference on Artificial Intelligence (באנגלית). 19 באוקטובר 2017. נבדק ב-21 באוקטובר 2017.
{{cite news}}
: (עזרה) - ^ CHOE SANG-HUN (16 במרץ 2016). "Google's Computer Program Beats Lee Se-dol in Go Tournament". הניו יורק טיימס. נבדק ב-18 במרץ 2016.
More than 100 million people watched the AlphaGo-Lee matches, Mr. Hassabis said.
{{cite news}}
: (עזרה) - ^ John Ribeiro (12 במרץ 2016). "Google's AlphaGo AI program strong but not perfect, says defeated South Korean Go player". PC World. נבדק ב-13 במרץ 2016.
{{cite news}}
: (עזרה) - ^ Zastrow, Mark (15 במרץ 2016). "How victory for Google's Go AI is stoking fear in South Korea". New Scientist. נבדק ב-18 במרץ 2016.
{{cite news}}
: (עזרה) - ^ JEE HEUN KAHNG; SE YOUNG LEE (15 במרץ 2016). "Google artificial intelligence program beats S. Korean Go pro with 4–1 score". Reuters. נבדק ב-18 במרץ 2016.
{{cite news}}
: (עזרה) - ^ Rémi Coulom. "Rating List of 2016-01-01". אורכב מ-המקור ב-18 במרץ 2016. נבדק ב-18 במרץ 2016.
{{cite web}}
: (עזרה) - ^ Neil Connor (11 במרץ 2016). "Google AlphaGo 'can't beat me' says China Go grandmaster". The Telegraph (UK). נבדק ב-13 במרץ 2016.
{{cite news}}
: (עזרה) - ^ "Chinese Go master Ke Jie says he could lose to AlphaGo : The DONG-A ILBO". נבדק ב-17 במרץ 2016.
{{cite web}}
: (עזרה) - ^ "...if today's performance was its true capability, then it doesn't deserve to play against me". M.hankooki.com. 2016-03-14. נבדק ב-2018-06-05.
- ^ CHOE SANG-HUN (15 במרץ 2016). "In Seoul, Go Games Spark Interest (and Concern) About Artificial Intelligence". The New York Times. נבדק ב-18 במרץ 2016.
{{cite news}}
: (עזרה) - ^ Yoon Sung-won (14 במרץ 2016). "Lee Se-dol shows AlphaGo beatable". The Korea Times. נבדק ב-15 במרץ 2016.
{{cite news}}
: (עזרה) - ^ HAL 90210 (28 בינואר 2016). "No Go: Facebook fails to spoil Google's big AI day". The Guardian (באנגלית בריטית). ISSN 0261-3077. נבדק ב-1 בפברואר 2016.
{{cite news}}
: (עזרה) - ^ "Go master Cho wins best-of-three series against Japan-made AI". The Japan Times Online. 24 בנובמבר 2016. נבדק ב-27 בנובמבר 2016.
{{cite news}}
: (עזרה) - ^ "Humans strike back: Korean Go master bests AI in board game bout". CNET. נבדק ב-27 בנובמבר 2016.
{{cite news}}
: (עזרה) - ^ "Go and make some drugs The Engineer". www.theengineer.co.uk (באנגלית). נבדק ב-2018-04-03.
AlphaGo35466358Q22329209