שרשרת פולימרית גאוסיאנית (באנגלית: Gaussian Polymer Chain) הינה שרשרת בה אורך הווקטור המחבר בין מונומרים סמוכים מתפלג גאוסיאנית.
פונקציית התפלגות ההסתברות של השרשרת כולה להיות בקונפורמציה מסוימת נקבעת על ידי מכפלת פונקציות ההתפלגות של כל וקטורי הקשר בשרשרת.
מודל השרשרת הגאוסיאנית מתאר את השרשרת הפולימרית כרצף של חלקיקים ספריים המחוברים ביניהם על ידי מוטות קשיחים או קפיצים. חיבורים אלו מכונים "וקטורי הקשר".
פולימר גמיש יכול להיות באחת מיני קונפורמציות רבות אפשריות. הקונפורמציה הינה הסידור המרחבי האפשרי של הפולימר הנקבע על ידי סט של וקטורי קשר המחברים אטומים שכנים.
הקונפורמציה הספיציפית של הפולימר נקבעת על ידי שלושה מאפיינים: גמישות השרשרת, אינטראקציות בין מונומרים על גבי השרשרת ואינטראקציות עם הסביבה. בין המונומרים לאורך השרשרת יכולות להיות אינטראקציות דוחות או מושכות.
מספר הקונפורמציות האפשריות עבור פולימר גמיש הוא כה רב כך שמועיל יותר לתאר את צורת הפולימר באמצעות כלים סטטיסטים.
מודל השרשרת הגאוסיאנית נמצא בשימוש נרחב בתיאור קונפורמציות ותנועה של שרשראות בודדות באופן תאורטי. כמו כן, מודל זה יעיל בתיאור תנועה קולקטיבית של מערכות בהן יש שרשראות רבות[1].
מודלים עבור שרשראות פולימריות מתחלקים לשתי קבוצות: מודלים המתארים שרשראות אידאליות (Ideal chains) ומודלים המתארים שרשראות אמיתיות.
שרשראות אידאליות הן שרשראות הממודלות תחת ההנחה כי בין המונומרים לא קיימת אינטראקציה בעוד שעבור שרשראות אמיתיות מתבצעת אינטראקציה בין המונומרים ובין השרשרת לבין התמיסה בה היא מצויה. חוזק אינטראקציה זו הוא שקובע האם באופן אפקטיבי קיימת דחייה או משיכה בין המונומרים.
וקטור קצה-קצה
וקטור קצה-קצה הינו הווקטור המחבר בין קצות הפולימר:
כאשר הוא "וקטור הקשר" המחבר בין האטום ה- לאטום ה- .
במקרה של שרשרת אידאלית מניחים שגודלו של וקטור הקשר קבוע: .
לשרשראות שונות יהיו וקטורי קשר שונים ולכן וקטורי קצה-קצה שונים.
המודל הכללי והפשוט ביותר של שרשרת אידאלית, Freely Joint Chain, מניח כי כל אחד מן הקשרים הינו בלתי תלוי בשכניו כך שיש לוקטור המתאר אותו הסתברות שווה להצביע לכל כיוון במרחב. תחת הנחה זו, משיקולי סימטריה מרחבית, מתחייב כי הממוצע על גבי הצבר (Ensemble average), שהינו הממוצע על גבי כל המצבים האפשריים של המערכת, מתאפס: .
מחושב באופן שונה עבור כל אחד מן המודלים השונים המתארים שרשרשת אידאלית ולכן שורש ממוצע הריבועים מקבל ערך שונה עבור כל אחד ממודלים אלו.
פיתוח מתמטי של ההתפלגות הסטטיסטית של וקטור הקצה-קצה
ההסתברות של וקטור קצה-קצה של שרשרת פולימרית בעלת קישוריות (וקטורי קשר) להיות באורך נתונה על ידי פונקציית התפלגות ההסתברות :
הינה פונקציית ההתפלגות של פולימר להיות בקונפורמציה מסוימת. כיוון שווקטורי הקשר בלתי תלויים זה בזה, ניתן לכתוב את כמכפלה: . מבטא את גודלו הקבוע של וקטור הקשר כך ש- תחת הנרמול .
כך שפונקציית ההתפלגות של וקטור הקצה-קצה היא גאוסיאן. אף על פי שתוצאה זו התקבלה עבור מודל Freely Joint Chain, היא תקפה עבור מקרה כללי יותר.
פונקציית התפלגות זו עלולה לתאר מצב לא פיזיקלי בו מתקיים שגודלו של גדול יותר מאורך השרשרת המקסימלי כאשר היא מתוחה לחלוטין, כלומר . כאשר עוסקים בתיאור פולימר על ידי המודלים הפיזיקליים הפשוטים ביותר, ניתן להניח כי הפולימר אינו במקסימום מתיחה אפשרית כך שזהו תיאור מספק.
באופן כללי, ניתן להראות כי מתקבלת תוצאה זהה עבור התפלגותו של וקטור הקצה-קצה בהינתן וכאשר השרשרת ארוכה . תוצאה זו מתקבלת על ידי משפט הגבול המרכזי.
מודל השרשרת הגאוסיאנית
שרשרת גאוסיאנית הינה שרשרת שאורך קשר שלה מתפלג גאוסיאנית: כאשר .
באמצעות הכפלת ההתפלגויות של כל אחד מוקטורי הקשר ניתן לקבל את פונקציית התפלגות ההסתברות של הקונפורמציות של השרשרת כולה:
שרשרת גאוסיאנית אינה מתארת באופן מדויק מבנה מקומי של פולימר אך מתארת היטב את תכונות הפולימר בסקאלת אורך גדולה. היתרון של מודל זה נובע מן הפשטות המתמטית המקלה על החישובים המתבצעים באמצעות המודל.
שרשרת זו מתוארת לרוב על ידי מודל מכני בו חרוזים מחוברים זה לזה באמצעות אוסצילטורים הרמוניים שהאנרגיה הפוטנציאלית של כל אחד מהם היא: