רשת מיון
במדעי המחשב, רשת השוואה היא מבנה מתמטי הכולל רשת של "חוטים" שעליהם "זורמים" ערכים, ושל יחידות השוואה המחברות בין זוגות חוטים ומחליפות בין הערכים שבהם כדי לסדרם, אם יש צורך. כאשר רשת השוואה מסוימת מצליחה לסדר כל קבוצת ערכים המוכנסת אליה כקלט היא נקראת רשת מיון.
מיון בעזרת רשתות מיון שונה משיטות מיון אחרות בכך שכל רשת יכולה למיין מספר קבוע מראש של קלטים. כלומר אי אפשר לקחת רשת ולהשתמש בה לכל בעיית מיון. היתרון הגדול של רשת מיון הוא שהיא נוחה למיקבול (כלומר לחלוקה למשימות היכולות להתבצע במקביל). כך, כשהמיון נעשה על מחשב המאפשר בצוע מקבילי ניתן להגיע באופן מעשי לביצועים של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle O(log^2n)} , להבדיל מהגבול הנמוך האפשרי עבור מיון טורי של . ישנן גם רשתות הנותנות סיבוכיות תאורטית טובה יותר (לוגריתמית) אך עם קבועים גבוהים מדי כדי לאפשר שימוש מעשי.
רשתות מיון הוצגו לראשונה ב-1954 על ידי ארמסטרונג, נלסון, ואו-קונור[1] שהוציאו פטנט על הרעיון.
הגדרה
רשת השוואה כוללת שני סוגי רכיבים - חוטים ויחידות השוואה. על החוטים ניתן לחשוב כמעבירים ערכים ה"זורמים" עליהם בו זמנית משמאל לימין. כל יחידת השוואה מקשרת שני חוטים. כשזוג ערכים "מגיע" ליחידת השוואה, היחידה מחליפה את הערכים אם ורק אם הערך הגבוה גדול מהערך הנמוך (במילים אחרות, יחידות ההשוואה מעבירות ערכים גבוהים למטה וערכים נמוכים למעלה)[2].
בעזרת נוסחה ניתן להגדיר שאם החוט העליון נושא ערך הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} והתחתון ערך הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} אז אחרי המפגש עם יחידת ההשוואה הערכים על החוטים יהיו הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x'=min(x,y)} ו הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle y'=max(x,y)} בהתאמה. רשת השוואה כזאת שתצליח להוציא (בצד ימין) ערכים ממוינים עבור כל סדר של ערכי קלט (בצד שמאל) נקראת רשת מיון.
הפעלה מלאה של רשת מיון פשוטה מופיעה באיור להלן. קל לראות שרשת זו תצליח למיין כל קלט אפשרי של ארבעה מספרים. שימו לב שארבע יחידות ההשוואה הראשונות "ישקיעו" את הערך הגדול למטה ו"יציפו" את הערך הקטן למעלה. היחידה האחרונה פשוט ממיינת את שני הערכים האמצעיים.
שגיאה ביצירת תמונה ממוזערת:
עומק ויעילות
היעילות של רשת מיון יכולה להמדד ב"גודלה" - כלומר במספר יחידות ההשוואה שבה, או ב"עומקה" - כלומר במספר המקסימלי של יחידות ההשוואה שערך כלשהו עלול להזדקק לעבור דרכם. חלק מההשוואות ברשת יכולות להתבצע במקביל - כפי שמסומן על ידי יחידות השוואה הממוקמות על אותו קו אנכי. אם מניחים שכל השוואה לוקחת יחידת זמן אזי ניתן לראות שעומק הרשת שווה לזמן הדרוש לבצוע המקבילי של המיון[2].
בניית רשת מיון על ידי הוספת ערכים או על ידי בחירתם
לכל מספר נתון של קלטים ניתן לבנות רשת מיון עם מספר מתאים של חוטים באופן רקורסיבי על ידי הוספת חוט לרשת קטנה יותר. נניח שנתונה רשת מיון עם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} חוטים (כלומר המצליחה למיין כל קלט של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} מספרים). ניתן להרחיב את הרשת (בהשראת מיון הכנסה) על ידי הוספת חוט נוסף ובצוע סדרה של השוואות על החוטים שמוינו על ידי הרשת הנתונה (ראו איור 4). ניתן גם להשיג את המטרה (בהשראת מיון בועות) על ידי "השקעה" מוקדמת של הערך המינימלי ואחר כך מיון שאר הערכים בעזרת הרשת הנתונה (ראו איור 5).
המבנה של שתי הרשתות המתקבלות הוא דומה. למעשה אם מסדרים את ההשוואות הניתנות לבצוע מקבילי זו מעל זו אזי ניתן לראות ששתי הרשתות למעשה זהות[1]. ראו איורים 8-6.
-
איור 6: הרשת המתקבלת בהשארת מיון הכנסה.
-
איור 7: הרשת המתקבלת בהשארת מיון בועות.
-
איור 8: מיקבול הפעולות מראה ששתי הרשתות שקולות.
לרשתות האלה יש עומק של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2n-3} [1]. זהו שיפור על הסיבוכיות של לפחות פעולות השוואה הדרושות למיון טורי במקרה הגרוע. למעשה ניתן לבנות רשתות מיון עם סיבוכיות טובה אף יותר ובעלות עומק של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle O(log^2n)} כפי שיתואר להלן.
עקרון אפס-אחד
בכמה מקרים, כמו בבניית רשת על ידי הוספת ערכים או על ידי בחירתם כפי שתואר למעלה, קל להראות שרשת ההשוואה הנוצרת היא רשת מיון. למרות זאת, לגבי רשת כללית ההוכחה שהרשת ממיינת בהצלחה כל קלט אפשרי היא משימה קשה. ברשת בעלת הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} חוטים יש לבדוק הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n!} סידורים אפשריים של ערכים על החוטים. אפשר להקטין מספר זה במידה משמעותית ל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2^n} בעזרת עקרון אפס-אחד. זהו עדיין מספר אקספוננציאלי של בדיקות אך הוא קטן מ-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n!} לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n\geq4} , וההבדל הולך וגדל עם . נראה שלא תמצא דרך יעילה יותר לבעיית הבדיקה אם רשת השוואה היא רשת מיון, אלא אם יסתבר שP=NP, כיוון שבעיה זאת ידועה כבעיה co-NP-שלמה[3].
עקרון אפס-אחד קובע שאם רשת השוואה מצליחה למיין את כל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2^n} סידורי הקלטים עם הערכים 0 ו 1, אזי היא גם תצליח למיין קלטים עם כל ערך בכלל. הוכחת העקרון[2] בקווים כלליים מראה שאם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} היא פונקציה מונוטונית אזי לכל זוג ערכים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} ו-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} מתקיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle min(f(x),f(y))=f(min(x,y))} וגם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle max(f(x),f(y))=f(max(x,y))} . מכאן נובע שאם רשת ממפה את ערכי הקלט ו-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} ל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x'} ו-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle y'} , אזי היא גם תמפה את הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)} ו-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(y)} ל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x')} ו-. אפשר להכליל טענה זאת באינדוקציה ללמה הטוענת שאם רשת ממפה את הקלטים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_1,...,a_n} ל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_1,...,b_n} , אזי היא גם תמפה את הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(a_1),...,f(a_n)} ל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(b_1),...,f(b_n)} . המשך ההוכחה הוא בדרך השלילה. נניח שהרשת שמצליחה למיין כל סדרת קלטים של 0 ו-1 לא מצליחה למיין את הסדרה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_1,...,a_n} , כלומר קיימים זוג ערכים כך ש הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_1<a_n} והרשת מחליפה את ערכיהם שלא כראוי. אם כך, הרשת גם תמיין לא כראוי את סדרת הערכים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(a_1),...,f(a_n)} עבור הפונקציה המונוטונית:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = \left\{\begin{matrix} 1 &\mbox{if}\ x > a_i \\ 0 &\mbox{otherwise.} \\ \end{matrix}\right. }
זאת בסתירה להנחה שהרשת ממיינת נכון כל סדרת ערכי 0 ו-1. ומכאן שההנחה שעקרון אפס-אחד לא מתקיים אינה נכונה[2].
עקרון אפס-אחד שימושי גם לבניות של רשתות מיון כיוון שבכל שלב מספיק לוודא שהרשת מצליחה למיין קלטים של 0 או 1.
בניית רשת מיון יעילה
ישנם מספר אלגוריתמים לבניית רשתות מיון פשוטות ויעילות בעלות עומק של (ולכן גם גודל של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle O(n\ log^2n)} ) כמו מיון ביטוני[4], מיון מיזוג זוגי-אי-זוגי של בטשר[5], מיון של, ורשת מיון בזוגות(אנ'). ברשתות אלה נעשה שימוש מעשי.
אפשר גם תאורטית לבנות רשתות מיון עם עומק מעריכי (לוגריתמי) לכל מספר של קלטים, בעזרת מבנה המכונה רשת AKS, על שם מגליו Ajtai, Komlós, Szemerédi[6]. זאת הייתה תגלית חשובה אך ללא חשיבות מעשית בשל הקבועים החבויים בנוסחת הסיבוכיות שהם בגודל של "הרבה הרבה אלפים"[2]. זאת, בין השאר, בשל השימוש בגרף מרחיב. גרסה פשוטה יותר של רשת AKS הוצגה על ידי פטרסון[7] אך גם כאן הקבועים מונעים כל שימוש מעשי. גודריך הציע בניה של רשת מיון בעלת עומק הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle O(n\ log\ n)} [8]. הקבועים הפעם קטנים בהרבה מאשר ברשתות AKS, אך עומק של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle O(n\ log\ n)} לא נותן יתרון לבצוע מקבילי.
רשתות מיון אופטימליות
עבור מספר קטן של קלטים ניתן לבנות רשתות מיון עם עומק אופטימלי (לבצוע המקבילי ביותר האפשרי) או עם גודל אופטימלי (מספר יחידות ההשוואה). רשתות אלה יכולות לשמש כדי לשפר ביצועים של רשתות גדולות יותר שנבנו באופן רקורסיבי, למשל בשיטת בטשר (ראה מעלה) על ידי עצירה מוקדמת של הרקורסיה והכנסת הרשת האופטימלית[9].
הטבלה להלן מסכמת את התוצאות האופטימליות המוכרות:
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
עומק[10] | 0 | 1 | 3 | 3 | 5 | 5 | 6 | 6 | 7 | 7 | 8 | 8 | 9 | 9 | 9 | 9 | 10 |
גודל, גבול עליון[11] | 0 | 1 | 3 | 5 | 9 | 12 | 16 | 19 | 25 | 29 | 35 | 39 | 45 | 51 | 56 | 60 | 71 |
גודל, גבול תחתון (אם שונה)[11] | 33 | 37 | 41 | 45 | 49 | 53 | 58 |
שש-עשר הרשתות בעלת עומק מינימלי מופיעות בספר "The Art of Computer Programming" של דונלד קנות' במהדורת 1973[1]. האופטימליות של שמונה הרשתות הראשונות הוכחה על ידי פלויד וקנות' בשנות ה-1960, ושל שאר הרשתות רק ב 2014[12] (הרשתות של 9 ו-10 קלטים הוכחו כאופטימליות ב 1991[9]).
רשתות מיון בעלות גודל מינימלי ידועות עד 10 קלטים. עבור יותר קלטים ידוע גבול עליון של הגודל כפי שמצוין בטבלה. כל עשר הרשתות הנ"ל היו מוכרות כבר משנת 1969 ושמונה הראשונות היו ידועות כאופטימליות מאז עבודתם של פלויד וקנות', אבל האופטימליות של הרשתות של 9 ו-10 קלטים הוכחה רק בשנת 2014[11].
נעשו גם ניסיונות לבנות רשתות מיון בעזרת אלגוריתמים גנטים: קנות' מזכיר שרשתות מיון עבור 9 ו-11 קלטים נמצאו כך על ידי לורן שוויברט ב-2001[1].
קישורים חיצוניים
- רשימת רשתות מיון בגדלים שונים
- Sorting Networks
- Sorting networks and the END algorithm
- Sorting Networks validity
הערות שוליים
- ^ 1.0 1.1 1.2 1.3 1.4 Knuth, D. E. (1997). The Art of Computer Programming, Volume 3: Sorting and Searching (Second ed.). Addison–Wesley. pp. 219–247. ISBN 0-201-89685-0. Section 5.3.4: Networks for Sorting.
- ^ 2.0 2.1 2.2 2.3 2.4 Corman, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L. (1990) Introduction to Algorithms (1st edition ed.). MIT Press and McGraw-Hill. פרק 28.
- ^ Parberry, Ian (1991). On the Computational Complexity of Optimal Sorting Network Verification. Proc. PARLE '91: Parallel Architectures and Languages Europe, Volume I: Parallel Architectures and Algorithms, Eindhoven, The Netherlands. pp. 252–269.
- ^ Corman, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L. (1990) Introduction to Algorithms (1st edition ed.). MIT Press and McGraw-Hill. עמ' 650-642.
- ^ Corman, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L. (1990) Introduction to Algorithms (1st edition ed.). MIT Press and McGraw-Hill. עמ' 651.
- ^ Ajtai, M.; Komlós, J.; Szemerédi, E. (1983). An הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n\ log\ n} sorting network. STOC '83. Proceedings of the fifteenth annual ACM symposium on Theory of computing. pp. 1–9. doi:10.1145/800061.808726. ISBN 0-89791-099-0.
- ^ Paterson, M. S. (1990). "Improved sorting networks with הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle O(log\ n)} depth". Algorithmica. 5: 75–92. doi:10.1007/BF01840378.
- ^ Goodrich, Michael (במרץ 2014). "Zig-zag Sort: A Simple Deterministic Data-Oblivious Sorting Algorithm Running in הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle O(n\ log\ n)}
Time". Proceedings of the 46th Annual ACM Symposium on Theory of Computing - STOC '14. arXiv:1403.2777. doi:10.1145/2591796.2591830.
{{cite journal}}
: (עזרה) - ^ 9.0 9.1 Parberry, Ian (1991). "A Computer Assisted Optimal Depth Lower Bound for Nine-Input Sorting Networks" (PDF). Mathematical Systems Theory. 24: 101–116. doi:10.1007/bf02090393. אורכב מ-המקור (PDF) ב-2016-03-03. נבדק ב-2018-05-15.
- ^ Codish, Michael; Cruz-Filipe, Luís; Ehlers, Thorsten; Müller, Mike; Schneider-Kamp, Peter (2015). Sorting Networks: to the End and Back Again.
- ^ 11.0 11.1 11.2 Codish, Michael; Cruz-Filipe, Luís; Frank, Michael; Schneider-Kamp, Peter (2014). Twenty-Five Comparators is Optimal when Sorting Nine Inputs (and Twenty-Nine for Ten). Proc. Int'l Conf. Tools with AI (ICTAI). pp. 186–193. arXiv:1405.5754.
- ^ Bundala, D.; Závodný, J. (2014). "Optimal Sorting Networks". Language and Automata Theory and Applications. Lecture Notes in Computer Science. 8370: 236–247. arXiv:1310.6271. doi:10.1007/978-3-319-04921-2_19. ISBN 978-3-319-04920-5.
אלגוריתמי מיון | ||
---|---|---|
רקע תאורטי | תורת הסיבוכיות • סימון אסימפטוטי • סדר מלא • רשימה • אלגוריתם תוך-מקומי • מיון יציב | |
אלגוריתמי מיון | אקראי • בועות • בחירה • בסיס • הכנסה • מהיר • מיזוג • מנייה • מסרק • סלים • ערימה • רשת מיון • שייקר • של | |
שונות | מיון טופולוגי • בעיית סידור הפנקייקים של גודמן |
רשת מיון30770104Q646477