במתמטיקה, פנטציה (או היפר-5 ) היא ההיפר-פעולה הבאה אחרי הטטרציה ולפני ההקסציה. היא מוגדרת כטטרציה חוזרת, בדיוק כפי שטטרציה היא חזקה חוזרת[1] זוהי פעולה בינארית המוגדרת עם שני מספרים a ו-b, כאשר עושים a בטטרציית עצמו b פעמים. לדוגמה, שימוש בסימון היפר-פעולות עבור פנטציה וטטרציה, פירושו 2 בטטרציית עצמו פעמיים, או . לאחר מכן ניתן לצמצם זאת ל
את המילה "פנטציה" טבע ראובן גודשטיין ב-1947 כהלחם מילים פנטה (חמש) ואיטרציה. זה חלק מתוכנית השמות הכללית שלו עבור היפר-פעולות. [2]
סימון
אין הסכמה לגבי הסימון של פנטציה; ישנן דרכים רבות ושונות לכתוב את פעולת הפנטציה. עם זאת, חלקם נפוצים יותר מאחרים, ולחלקם יתרונות או חסרונות ברורים בהשוואה לאחרים.
אפשר לכתוב פנטציה, כמו שכותבים היפר-פעולות פעולות אחרות, למשל: = a בטטרצית a כך שכמות הפעמים שיש a בתרגיל הזה שווה ל-b, והחמש בסוגריים המסולסלות מסמן שזה פנטציה.
בסימון החץ למעלה, מיוצג כ אוֹ . בסימון זה, מייצג חזקה ו- מייצג טטרציה. ניתן להתאים את הפעולה בקלות לחזקה וטטרציה על ידי שינוי כמות החצים.
סימון מוצע נוסף הוא , אם כי זה לא ניתבה לפעולות היפר-ניתוח גבוהות יותר. [4]
דוגמאות
ניתן לקבל את ערכי פונקציית הפנטציה גם מהערכים בשורה הרביעית בטבלת הערכים של גרסה של פונקציית אקרמן: אם מוגדר על ידי הישנות אקרמן עם התנאים ההתחלתיים ו , לאחר מכן . [5]
כמו טטרציה, פעולת הבסיס שלו, פנטציה לא הורחבה לגבהים שאינם שלמים, pentation מוגדר כרגע רק עבור ערכים שלמים של a ו- b שבהם a > 0 ו- b ≥ −2, ועוד כמה ערכי מספר שלמים שעשויים להיות מוגדרים באופן ייחודי. כמו בכל פעולות יתר מסדר 3 ( אקספונציה ) ומעלה, לפנטציה יש את המקרים הטריוויאליים (זהויות) הבאים שמתקיימים עבור כל הערכים של a ו- b בתחום שלו:
מלבד המקרים הטריוויאליים המוצגים לעיל, פנטציה מייצרת מספרים גדולים מאוד במהירות רבה, כך שיש רק מקרים בודדים שאינם טריוויאליים המייצרים מספרים שניתן לכתוב בסימון קונבנציונלי, כפי שמודגם להלן:
(מוצג כאן בתווי אקספוננציאלי חוזר מכיוון שהוא גדול מדי מכדי להיכתב בסימון קונבנציונלי. הערה )