פולינום סימטרי

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

באלגברה, פולינום בכמה משתנים הוא פולינום סימטרי, אם הוא נשאר קבוע תחת כל החלפה של המשתנים. לדוגמה, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x_1^2+x_2^2+x_3^2} סימטרי, ואילו הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x_1 +x_2-x_3} אינו סימטרי. הפולינומים הסימטריים נחקרו בתחילה בהקשר לפתרונות של משוואות פולינומיות בנעלם אחד, משום שמקדמי הפולינום הם פולינומים סימטריים בשורשים שלו. עם הזמן זכו הפולינומים הסימטריים למעמד משל עצמם, והם מופיעים בענפים שונים של המתמטיקה, בעיקר בקומבינטוריקה.

הפולינומים הסימטריים הסטנדרטיים

הפולינומים הסטנדרטיים ב-n משתנים הם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \sigma_r = \sum_{i_1<\cdots<i_r}x_{i_1}\cdots x_{i_r}} (כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ r = 1,\dots,n} ): סכום של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ {n \choose r}} מונומים ממעלה r. את הפולינום הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \prod_{i=1}^n (x-x_i)} , ששורשיו הם המספרים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_1,\dots,x_n} , אפשר לכתוב בצורה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \sum_{i=0}^{n} (-1)^i \sigma_i x^{n-i}} , ומכיוון שפולינום קובע את שורשיו, נובע מכך שאוסף הפונקציות הסימטריות ב-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x_1,\dots,x_n} קובע את המשתנים הללו, עד כדי סדר.

המשפט היסודי של הפולינומים הסימטריים קובע שכל פולינום סימטרי אפשר להציג (באופן יחיד) כפולינום בפולינומים הסטנדרטיים. ניוטון רמז לטענה כזו, ואחריו טיפל בכמה מקרים גם אדוארד וארינג (Meditationes Algebraicae, 1782). את המשפט הוכיח גאוס, במסגרת טיפולו במשפט היסודי של האלגברה.

מן המשפט הזה אפשר להסיק תוצאות דומות על פונקציות רציונליות סימטריות (כולן פונקציות רציונליות של הפולינומים הסטנדרטיים), ועל פונקציות סימטריות במשתנים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x_i^{\pm 1}} (כולם פונקציות במשתנים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \sigma_1,\dots,\sigma_n,\sigma_{n}^{-1}} ).

ב-1629 הגדיר Albert Girard את הפונקציות הסימטריות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ s_r = x_1^r+\cdots +x_n^r} . ניוטון חקר פונקציות כאלה ב-1665-1666, והציג את התוצאות שאליהן הגיע בספרו Arithmetica Universalis, 1707. ניוטון סיפק גם נוסחה רקורסיבית להצגת הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ s_r} במונחי הפונקציות הסימטריות.

הדיסקרימיננטה ופולינומים כמעט סימטריים

בין הפולינומים הסימטריים, יש חשיבות מיוחדת לדיסקרימיננטה של המספרים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x_1,\dots,x_n} , המוגדרת כמכפלה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \Delta = \prod_{i<j} (x_i-x_j)^2} . לפי ההגדרה, השורש הריבועי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \sqrt{\Delta}} הוא פולינום במשתנים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x_1,\dots,x_n} , ואילו הדיסקרימיננטה עצמה היא פולינום סימטרי, שאפשר לבטא במונחי הפולינומים הסטנדרטיים. למשל, עבור n=2 מתקיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \Delta = (x_1-x_2)^2 = \sigma_1^2 - 4 \sigma_2} , ואילו עבור n=3 הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \Delta = -4\sigma_2^3 - 27 \sigma_3^2 + \sigma_1^2 \sigma_2^2 - 4\sigma_1^3 \sigma_3 + 18\sigma_1 \sigma_2 \sigma_3} . שורש הדיסקרימיננטה אינו סימטרי, משום שהוא נשאר קבוע רק תחת הפעלה של תמורה זוגית: לכל תמורה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \tau} מתקיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \tau(\sqrt{\Delta}) = \sgn(\tau) \cdot \sqrt{\Delta}} (זו הבחנה של Jacobi, 1841). היעקוביאן של הפונקציות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \sigma_1,\dots,\sigma_n} לפי המשתנים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x_1,\dots,x_n} הוא שורש הדיסקרימיננטה.

כהכללה של המשפט היסודי, כל פונקציה שאינה משתנה תחת הפעלת תמורות זוגיות אפשר לכתוב בצורה , כאשר f,g פונקציות סימטריות.

ראו גם

קישורים חיצוניים

הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0

פולינום סימטרי37223378