נוסחת ברטשניידר

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

בגאומטריה אוקלידית, נוסחת ברטשניידר היא נוסחה לחישוב שטח של מרובע כלשהו על בסיס צלעותיו וזוויותיו, והיא

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle K = \sqrt {(s-a)(s-b)(s-c)(s-d) - abcd \cdot \cos^2 \left(\frac{\alpha + \gamma}{2}\right)}}
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \sqrt{(s-a)(s-b)(s-c)(s-d) - \tfrac{1}{2} abcd [ 1 + \cos (\alpha+ \gamma) ]} .}

כאשר a,b,c ו-d הם צלעות המרובע, s היא מחצית ההיקף ו-α ו-γ הן זוויות נגדיות. הנוסחה נקראת על שם קרל אנטון ברטשניידר, אשר גילה אותה בשנת 1842. נוסחת ברטשניידר היא הכללה של נוסחת ברהמגופטה, שמתבססת על נוסחת הרון.

הוכחה

קובץ:Tetragon measures.svg
סרטוט להוכחה.

נסמן באות K את שטח המרובע, אז:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} K &= \text{area of } \triangle ADB + \text{area of } \triangle BDC \\ &= \frac{a d \sin \alpha}{2} + \frac{b c \sin \gamma}{2}. \end{align} }

מכאן

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4K^2 = (ad)^2 \sin^2 \alpha + (bc)^2 \sin^2 \gamma + 2abcd \sin \alpha \sin \gamma. \, }

על פי משפט הקוסינוסים:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^2 + d^2 -2ad \cos \alpha = b^2 + c^2 -2bc \cos \gamma, \, }

אז שתי הצלעות שוות לאורך הצלע BD בריבוע, אז ניתן לרשום את הנוסחה כ:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{(a^2 + d^2 - b^2 - c^2)^2}{4} = (ad)^2 \cos^2 \alpha +(bc)^2 \cos^2 \gamma -2 abcd \cos \alpha \cos \gamma. \,}

עכשיו נחבר את הנוסחה הזו לנוסחה שלמעלה ונקבל:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} 4K^2 + \frac{(a^2 + d^2 - b^2 - c^2)^2}{4} &= (ad)^2 + (bc)^2 - 2abcd \cos (\alpha + \gamma) \\ &= (ad + bc)^2 - 4abcd \cos^2 \left(\frac{\alpha + \gamma}{2}\right). \end{align} }

מכאן נשתמש באותה הדרך שבה הוכחה נוסחת ברהמגופטה, נקבל כי:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 16K^2 = (a+b+c-d)(a+b-c+d)(a-b+c+d)(-a+b+c+d) - 16abcd \cos^2 \left(\frac{\alpha + \gamma}{2}\right).}

נציב את מחצית ההיקף בנוסחה בתור:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle s = \frac{a+b+c+d}{2},}

ונקבל כי

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 16K^2 = 16(s-a)(s-b)(s-c)(s-d) - 16abcd \cos^2 \left(\frac{\alpha + \gamma}{2}\right)}

נחלק ב-16 ונוציא שורש ונקבל את נוסחת ברטשניידר.

קישורים חיצוניים

הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0

נוסחת ברטשניידר23771450Q537518