חלוקה (תורת הקבוצות)
בתורת הקבוצות, חלוקה (לפעמים נקראת חלוקה זרה) של קבוצה X, היא אוסף של תת קבוצות לא ריקות של X, שהן זרות בזוגות ומכסות את X (דהיינו, X שווה לאיחוד שלהן).
דוגמאות
- קבוצת המספרים הזוגיים וקבוצת המספרים האי זוגיים היא חלוקה של קבוצת המספרים הטבעיים.
- כל יחס שקילות על קבוצה מסוימת מגדיר עליה חלוקה למחלקות שקילות. הכיוון ההפוך גם נכון: כל חלוקה של קבוצה היא למעשה מחלקות שקילות של יחס שקילות שמוגדר כך שהאיבר a שקול ל-b אם שניהם שייכים לאותה תת-קבוצה.
- אם H היא תת-חבורה של G, אז המחלקות הימניות או השמאליות של H הן חלוקה של G. אם H תת-חבורה נורמלית, איברי החלוקה מהווים חבורה בפני עצמם באופן טבעי.
- לכל קבוצה X לא ריקה קיימות חלוקות טריוויאליות: החלוקה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\{ X \right\}} שמכילה איבר יחיד והוא הקבוצה כולה, והחלוקה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \left\{ \left\{ x \right\} : x \in X \right\}} - פירוק הקבוצה ליחידונים.
יחס העידון
על אוסף החלוקות של קבוצה X מוגדר יחס סדר חלקי הנקרא "יחס העידון"; חלוקה אחת מעודנת יותר מהשנייה אם קבוצותיה מוכלות בקבוצות החלוקה השנייה. באופן הזה החלוקה המעודנת יותר היא למעשה איחוד של חלוקות של קבוצות החלוקה הפחות מעודנת. באופן פורמלי, חלוקה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ P_1 = \{ A_\alpha\} _{ \alpha \in I}} מעודנת יותר מחלוקה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ P_2 = \{ B_\beta\} _{ \beta \in J}} אם ורק אם לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha \in I} קיימת הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \beta \in J} כך ש- . יחס העידון הופך את אוסף החלוקות של הקבוצה X לסריג שהמינימום והמקסימום שלו הן החלוקות הטריוויאליות.
חלוקות של קבוצות סופיות
לחלוקות של קבוצת המספרים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1,2,...,n} יש חשיבות רבה בקומבינטוריקה ותחומים אחרים של המתמטיקה.
חבורה פרימיטיבית
בתורת החבורות, כאשר חבורה G פועלת על קבוצה, ניתן לדבר על חלוקות שהן אינווריאנטיות תחת אותה חבורה או ועל חלוקות שאינן כאלו. חלוקה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{ A_\alpha\}} נקראת G-אינווריאנטית אם עבור כל איבר מ-G, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ g \in G} מתקיים:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \left\{ A_\alpha \right\} = \left\{ g A_\alpha \right\}}
כלומר איברי החבורה לכל היותר מחליפים בין קבוצות החלוקה אך לא לוקחים קבוצה מהחלוקה המקורית לקבוצה שלא נמצאת בחלוקה. חבורות שהחלוקות האינווריאנטיות היחידות שלהן הן החלוקות הטריוויאליות נקראות חבורות פרימיטיביות.
קישורים חיצוניים
- חלוקה, באתר MathWorld (באנגלית) המזהה לא מולא ולא נמצא בוויקינתונים, נא למלא את הפרמטר.
- חלוקה (תורת הקבוצות), באתר אנציקלופדיה למתמטיקה (באנגלית)
שגיאות פרמטריות בתבנית:בריטניקה
פרמטרי חובה [ 1 ] חסרים
32714309חלוקה (תורת הקבוצות)