לולאת מופן
במתמטיקה, לולאת מופן היא לולאה המקיימת זהויות מסוימות. כל חבורה היא לולאת מופן. הלולאות נקראות על שמה של רות מופן (אנ'), שהוכיחה ב-1935 ששלושה איברים a,b,c בלולאת מופן המקיימים את היחס יוצרים חבורה. נובע מכאן שהחזקות מוגדרות היטב.
בלולאת מופן כל האיברים הפיכים, והיא מקיימת את תכונת ההיפוך . תת-לולאה ולולאת מנה של לולאת מופן הן לולאות מופן. הדוגמה המרכזית ללולאת מופן היא אוסף האיברים ההפיכים באלגברה אלטרנטיבית. כל לולאת מופן סופית פשוטה היא או חבורה פשוטה, או "לולאת Paige". לולאת מופן הלא-אסוציאטיבית הקטנה ביותר היא מסדר 12.
זהויות
הזהויות הבאות שקולות זו לזו:
- ,
- ,
- ,
- .
לולאה המקיימת אחת מהן, ולכן את כולן, היא לולאת מופן. כל לולאת מופן היא אלטרנטיבית מימין ומשמאל, ומקיימת את הזהות הגמישה. הגמישות מאפשרת לכתוב את הזהויות בצורה מקוצרת: z(x(zy)) = (zxz)y, x(zyz) = ((xz)y)z ו- z(xy)z = (zx)(yz).
תורת המבנה
לולאות מופן סופיות מקיימות את תכונת לגרנז', לפיה הסדר של תת-לולאה מחלק את הסדר של הלולאה (במתכונת משפט לגרנז'. כל לולאת מופן מושרית על ידי חבורה עם שילוש [1].
ידוע (Shestakov, 2003) שלא כל לולאת מופן (ואפילו סופית) ניתנת לשיכון בלולאת האיברים ההפיכים של אלגברה אלטרנטיבית. שאלה זו עודנה פתוחה עבור לולאות מופן קומוטטיביות.
לולאות מופן קומוטטיביות
האסוציאטור מוגדר בלולאה קומוטטיבית לפי . בלולאת מופן קומוטטיבית מתקיימת הזהות . נוסף לזה, כל חזקה שלישית שייכת לגלעין.
ראו גם
- How and why Moufang loops behave like groups, S.M. Gagola III, 2011 [2],
לולאת מופן32552597