גרר (כוח)

מתוך המכלול, האנציקלופדיה היהודית
(הופנה מהדף כוח גרר)
קפיצה לניווט קפיצה לחיפוש
הכוחות האווירודינמיים הפועלים על הפרופיל בזרימה

במכניקת הזורמים, כוח הגְּרָר הוא הכוח המתנגד לתנועת גוף הנע בתוך זורם (נוזל או גז). מבחינה מתמטית, זהו הרכב המאמצים המופעלים על הגוף בכיוון ההפוך למהירות היחסית של הגוף ביחס לזורם.[1]

באווירודינמיקה, כוח הגְּרָר, יחד עם כוח העילוי, מהווה את אחד משני הכוחות החשובים והמשמעותיים ביותר בתחום. סוגים שונים של תופעות מקושרות לגרר הכללי וניתן להפריד בין גרר צורה וגרר חיכוך (לרוב, משמעותי יותר) אשר שניהם תולדה של גרר אשר יוגדר בתור גרר טפילי. לעומת הגרר הטפילי, קיים גם גרר מושרה, המושפע בעיקר מצורת הגוף (הגאומטריה) הנע בזורם. התנהגות הגרר תלויה בתנאי הזרימה, המאופיינים על ידי מספר ריינולדס ומספר מאך. כוח גרר פועל הן בין גוף לבין זורם, והן בין שני זורמים שונים. באופן כללי, כוח הגרר תלוי בעיקר במהירות.[2]

הנוסחה הכללית

באופן כללי, מאנליזת ממדים על משוואות הזרימה, משוואות נאוויה-סטוקס, במצב של זרימה שאינה דחיסה, ניתן לבטא את כוח הגרר בצורה הבאה:

כאשר:

  • - כוח הגרר. כאמור, בכיוון
  • - צפיפות הזרם בתוכו נע הגוף
  • - שטח הצורה המוטל למישור הניצב לכיוון התקדמות הגוף
  • - מקדם הגרר
  • - המהירות היחסית של הגוף ביחס לזורם

נוסחה זו, בדומה להרבה נוסחאות באנליזת ממדים ומכניקת זורמים, מאפשרת לסדר באופן רציונלי תוצאות ניסוי עם מקדם הגרר, שהוא מספר חסר-ממדים. נוסחה זו אינה תקפה לכל התנאים, ובמקרים מסוימים הגרר פרופורציוני למהירות ולא למהירות בריבוע (כפי שמופיע בנוסחה). נוסחה זו תקפה עבור מספרי ריינולדס לא נמוכים.

סוגים שונים של גרר

באופן כללי, סוגי הגרר השונים מופרדים לפי ההגדרות הבאות:[3]

  • גרר טפילי
    • גרר חיכוך
    • גרר צורה
  • גרר מושרה
    • גרר פרופיל
    • מערבולות קצה כנף

המונח "גרר טפילי" משמש בעיקר באווירודינמיקה, מאחר שלצורך הרמת כנף מעלה כוח הגרר קטן באופן כללי בהשוואה לכוח העילוי. בזרימה סביב גופים בעלי צורה שאינה אווירודינמית, הגרר הוא לרוב הכוח השולט. סוגים שונים אלה מסווגים בתור אבני יסוד שונים של כוח הגרר הכללי, הכולל את כולם.

יתר על כן, גרר מושרה נמצא רלוונטי ומשמעותי כאשר כנפיים, או גוף הרמה בעל צורה דומה, מתקדמים בתוך זורם. לכן בדרך כלל גרר מושרה נידון מנקודת מבט אווירודינמית תעופתית, או בתכנון מערכות המושפעות מכך כגון כלי רכב וספינות בעלי כנף. גרר גלים, שהוא ביטוי ל"גרר צורה", יתרחש כאשר גוף קשיח מתקדם דרך זורם בסמוך למהירות הקול של אותו זורם או במקרה בו קיים משטח זורם חופשי הנע יחד עם גלי שטח המוקרנים מהגוף המתקדם. לדוגמה, אוניה.

סוגים שונים של גרר
צורה וזרימה גרר
צורה
גרר
חיכוך
0% 100%
~10% ~90%
~90% ~10%
100% 0%

גרר חיכוך

גרר החיכוך מושפע ישירות מהמהירות היחסית של הגרר לעומת הנוזל. גרר זה מחייב בזבוז אנרגיה ההופכת לחום בדיסיפציה. גרר זה יהיה הגרר הדומיננטי ביותר כאשר צורת הגוף תדמה כמה שיותר לפלטה שטוחה ודקה.

גרר צורה

ככל שצורת הגוף הנע בזורם שונה מצורתה של פלטה דקה, כך קטנה השפעת גרר החיכוך ביחס להשפעת גרר הצורה. גרר הצורה במהותו הפיזיקלית נוצר עקב גלים המתקדמים בזורם והפרשי לחצים הפועלים על הגוף.

גרר מושרה

בגופים דמויי כנף, הגרר המושרה ייווצר כתוצאה מפילוג ערבולים הנפרשים לאורך הכנף. השפעתם תוכרע מאופן פרישתם על גבי הכנף ועוצמתם. כאשר פרופיל הכנף יהיה סופי, תהיה גם השפעה מורגשת למערבולות קצת הכנף.

מספרי ריינולדס נמוכים

מספר ריינולדס, בצורתו הכללית, יחושב באופן הבא:

כאשר:

  • - צפיפות הזורם בו גוף מתקדם
  • - המהירות היחסית של הגוף ביחס לזורם
  • - אורך אופייני המתאר את הגוף
  • - צמיגות הזורם

ככל שמספר ריינולדס גדול יותר, כך לצמיגות יש קושי גדול יותר לעצור את הזרימה החיצונית המציפה. אזור השינוי במהירויות המוכתב לפי תנאי האי-החלקה של דופן הגוף, קטן ויוצר שכבת גבול המרכזת את מרב האפקטים של הצמיגות. בהתחלה, הזרימה היא למינארית: קווי הזרימה יעקבו באופן דומה אחר צורת המכשול או הגוף הנקרא בדרכם. החל מאזור המעבר, הזרימה הופכת להיות טורבולנטית, החלקיקים שהיו בשכבת הגבול הופכים לבעלי נתיב יותר יציב. השכבה הופכת אז להיות יותר עבה ומפיצה יותר אנרגיה מהשכבה הלמינרית.[3]  

בתורת הכנף הדקה, נדמה כי ישנם מקרים שבהם עדיף לדחות כמה שיותר את המעבר משכבת גבול למינרית לטורבולנטית, על מנת לקבל מאזן כוחות התואם יותר את דרישות התכנון של הכנף, או הגוף שאליו הכנף מחוברת. אבל, במקרים מסוימים, נמצא כי עדיף לשמור על שכבת הגבול כטורבולנטית דווקא, במטרה לדחות ניתוקי זרימה, המשפיעים באופן ניכר על גרר הצורה.

כאשר נרצה לנתח בעיית זרימה ונקבל מספרי ריינולדס נמוכים במקרים של נוזל שאינו דחיס נוכל לקרוא לזרימה בתור זרימת סטוקס. במקרה של זרימת סטוקס כוח הגרר מאבד את תלותו הריבועית במהירות ותלותו במהירות הופכת ליניארית, כוח הגרר עדיין יפעל בכיוון ההפוך לכיוון המהירות היחסית של הגוף הנע בזורם ביחס לזורם, כמוגדר לכוח שהוא גרר, ויכתב בצורה הבאה[4]:

כאשר הוא קבוע התלוי בתכונות הזורם הנע סביב הגוף ובגדלים המאפיינים את הבעיה.

גוף הנופל ממנוחה בזרימת סטוקס

במקרה פרטי בו גוף נופל ממנוחה בתוך זורם, מפתרון מאזן כוחות ניוטוני ושימוש בכוח הציפה נמצא כי את המהירות של הגוף הנופל נוכל לתאר באופן הבא:

מבט על שלושה גופים הנזרקים בזווית 70 מעלות. הגוף השחור נמצא בעולם אידיאלי ואינו מרגיש אף צורה של גרר, צורת מסלולו פרבולה. הגוף הכחול מרגיש גרר סטוקס ונמצא במספרי ריינולדס נמוכים. הגוף הירוק מרגיש גרר ניוטוני, כללי.[5]

כאשר הוא קבוע הגרביטציה ו- הוא משתנה הזמן. אפשר לראות שבזמנים השואפים לאינסוף מהירות הגוף מתכנסת לערך קבוע, וגודל ניתן על ידי:

ובמקרה שהגוף הוא גוף בעל צורה ספרית, ג'ורג' גבריאל סטוקס פיתח את הביטוי הבא עבור המקדם :

כאשר הוא רדיוס הספירה.

במקרה כזה נקבל כי כוח הגרר יקרא גרר סטוקס הדומיננטי בזרימות המאופיינות במספרי ריינולדס נמוכים ונוכל לכתוב:

לדוגמה, נניח גוף שצורתו ספרית בקירוב, הנע בתוך מים במהירות של ורדיוסו . צמיגות המים בתנאים סטנדרטיים היא

נקבל כי כוח הגרר הפועל עליו הוא , שהוא בקירוב כוח הגרר הפועל על חיידק הנע במים.

מקרים נוספים

גוף ללא פרופיל וקווי זרימה
גוף בעל פרופיל כנף וקוי זרימה

מקרה של גוף ללא פרופיל כנף - גרר צורה

עבור מספרי הריינולדס החלשים ביותר, הזורם יאיץ בחלקה הקדמי של הספירה ויעצור בחלקה האחורי, בנקודות סטגנציה. על פי משפט ברנולי, הלחץ קטן ואחר כך שוב גדל על מנת למצוא את אותם הערכים איתם התחיל. לפי פרדוקס ד'אלמבר: בלי צמיגות אין גרר. למעשה, הצמיגות מחזיקה את הלכידות של הנוזל וכאשר היא הופכת לפחות דומיננטית במספרי הריינולדס הגבוהים, מתקיים ניתוק זרימה שגורר איתו הפרדה של הזרימה. בגלל הרציפות, אפשר לתאר את שכבת הגבול כדקה מספיק כדי שללחץ יהיה ערך דומה לערך אשר נמצא בזורם הקרוב (עקרון הפשטת התאוריה של שכבת הגבול). מצד שני, מאוד קרוב לדופן, המהירות מאוד נמוכה עד כדי אפסית עקב תנאי האי החלקה. מצב זה מאפשר ללחץ הגבוה יחסית להסיט את שכבת הגבול בחלקה הקדמי של הספירה ולהעביר אותה לחלקה האחורי. במפגש הזרימה המציפה ושכבת הגבול האחורית, עקב הניתוק, תתחיל סחרחורת המפיצה ומבזבזת אנרגיה.[3]

עם גוף ללא פרופיל כנף, סימטרי, כמו צילינדר עם חתך מעגלי, מתקבלות שתי סחרחורות סימטריות. הגדלה מתונה של המהירות תעדיף את אחת מהן וכאשר הקוטר של הסחרחורת הופך להיות בגודל קוטר הצילינדר היא תתנתק ותוחלף עם הסחרחורת הנמצאת בצד השני, תהליך שיגרום למעבר הערבולים של קרמן. הגדלה נוספת של מספרי הריינולדס משנה את מעבר המערבולות והופכות אותו למופרע.

מקרה של גוף בעל פרופיל דמוי כנף - גרר מושרה

כל זמן שהמערבולות לא מתנתקות, הן נשארות כלואות באזור המוקף בזרימה מציפה שבה הצמיגות של הנוזל לא לוקחת תפקיד משמעותי. דרך אחת לצמצם את הגרר היא לחזק את האזור בהוספת גוף למכשול. במצב כזה נאפשר להגביה את המהירות שבה יתבצע הניתוק.

אנימציית הערבולים של קרמן. הזרימה מכל צד של הגוף נתונה בצבע שונה. אפשר לראות את ניתוק הערבולים המתנתקים מהצדדים השונים כאשר קוטר הערבול המתפתח מגיע לגודל קוטר הגוף המתקדם.

כנף של מטוס גם בעלת פרופיל וגם דקה, תכונה המקרבת אותה לפלטה. בצורה כזו למעשה אנו מקבלים שליטה במידה מסוימת על גרר הצורה כשנשאף שהשפעתו לא תהיה גבוהה מדי. למרות זאת קיימת השפעה שמעבר אליה עלול להיווצר ערבול שיגרום להתנתקות עם הפחתה משמעותית של הגרר.[3]

גרר גלים

במקרים מסוימים הכוללים הלם, מהירות הזרימה עלולה ליפול באופן פתאומי עד כדי כך שצורת זרימתה בהתאם למספר מאך המשתנה עוברת מקונפיגורציה על-קולית לקונפיגורציה תת-קולית, מקרה זה מבוטא בסוג נוסף של גרר המיוחס לצריכה נוספת של אנרגיה, מסוג שונה.

לקריאה נוספת

  • Introduction to Flight, John D. Anderson, Jr., McGraw-Hill, מסת"ב 0072990716
  • Fundamentals of Aerodynamics, John D. Anderson, Jr. McGraw-Hill, מסת"ב 9780071289085
  • Understanding Flight, by David Anderson and Scott Eberhardt, McGraw-Hill, מסת"ב 0071363777
  • Serway, Raymond A.; Jewett, John W. (2004). Physics for Scientists and Engineers (6th ed.). Brooks/Cole. מסת"ב 0-534-40842-7
  • Boundary layer theroy, Dr Hermann Schlichting, McGraw-Hill

קישורים חיצוניים

ויקישיתוף מדיה וקבצים בנושא גרר בוויקישיתוף

הערות שוליים

  1. ^ http://www.merriam-webster.com/dictionary/drag
  2. ^ "NASA: What is drag?"
  3. ^ 3.0 3.1 3.2 3.3 John D. Anderson, Jr, Fundamentals of Aerodynamics, McGraw-Hill, 2011
  4. ^ Hermann Schlichting, Boundary Layer Theory, McGraw-Hill, 1960
  5. ^ Drag (physics) - English wikipedia entry


הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0

25773561גרר (כוח)