יתדון
בגאומטריית המרחב, יתדון (disphenoid) הוא ארבעון, שכל פאותיו חופפות. לארבעון כזה יש שלושה זוגות נגדיים של צלעות שוות-אורך, וגם ארבע זוויותיו המרחביות חופפות.
יתדון שהפאות שלו הן משולשים שוני-צלעות נקרא רומבי, ויתדון שהפאות שלו שוות-שוקיים נקרא טטרגונלי. הארבעון המשוכלל הוא יתדון שבו הפאות הן שוות-צלעות.
חבורת הסימטריות של היתדון הרומבי היא חבורת הארבעה של קליין, והיא מאפשרת החלפה (יחידה) של כל זוג קודקודים. ליתדון הטטרגונלי יש אותן סימטריות מרחביות, אבל גם סימטריית שיקוף (שבגינה חבורת הסימטריות דיהדרלית, עם שמונה איברים). (חבורת הסימטריות המרחביות של הארבעון המשוכלל היא חבורת התמורות הזוגיות , ועם שיקופים מתקבלת החבורה הסימטרית ).
תיאור אנליטי
נסמן ב- את וקטורי הצלעות היוצאות מקודקוד שנקבע בראשית הצירים. שאר הווקטורים הם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ v_1-v_2,v_2-v_3,v_3-v_2} . חפיפת הפאות מאלצת אורכים שווים, כגון הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ ||v_1||=||v_2-v_3||} , ומכאן נובעים השוויונים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ ||v_i||^2=v_i \cdot(v_j+v_k)} לכל i,j,k שונים. פתרון המשוואות מאפשר לתאר את המכפלות המעורבות על-פי ארכי הצלעות: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ v_i \cdot v_j = \frac{1}{2}(||v_i||^2+||v_j||^2-||v_k||^2)} .
התנאי היחיד לקיום וקטורים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ v_1,v_2,v_3} עם מטריצה סימטרית הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ (v_i\cdot v_j)_{i,j}} נתונה של מכפלות פנימיות הוא שזו תהיה מטריצה חיובית לחלוטין. אם מניחים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ ||v_i||=a_i} עבור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ a_1,a_2,a_3} המקיימים את אי-שוויון המשולש הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ a_k<a_i+a_j} (לכל סידור של המקדמים), אז הדטרמיננטות של המינורים הראשיים, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ a_1^2, \frac{1}{4}\sum_{i,j,k}(a_i+a_j-a_k)(a_i+a_k-a_j), \frac{1}{2}\prod(a_i+a_j-a_k)} , כולן חיוביות. מכאן שלכל משולש P יש יתדון שפאותיו חופפות ל-P.
המשוואות היסודיות מראות גם שאת הווקטורים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ v_1,v_2} אפשר להשלים ליתדון, אם ורק אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ v_1 \cdot v_2 \leq \min\{||v_1||^2,||v_2||^2\}} .
המקבילון הנוצר
כמו בכל ארבעון, המשכת שלוש הפאות היוצאות מקודקוד נתון של היתדון למקביליות בכיוון ההפוך, יוצרת מקבילון. את המקבילון אפשר לבנות משני יתדונים הפוכים (שפאותיהם חופפות, אך הם אינם איזומורפיים במרחב, אלא מהווים תמונת ראי זה של זה), ומתמניון שבסיסיו (בכל הפירוקים האפשריים לזוג פירמידות) מעוינים (בתמונה משמאל ניכרים מעוין כחול, שהוא ריבוע משום שהיתדון טטרגונלי, ומעוינים ירוק ואדום). עבור יתדון כללי, למקבילון המתקבל יש חבורת סימטריות מרחביות טריוויאלית.