השערת המספרים הראשוניים התאומים

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש
בעיות פתוחות במתמטיקה:

בערך זה
נעשה שימוש
בסימנים מוסכמים
מתחום המתמטיקה.
להבהרת הסימנים
ראו סימון מתמטי.

בתורת המספרים, השערת הראשוניים התאומים קובעת שישנם אינסוף זוגות של ראשוניים תאומים, כלומר מספרים ששניהם ראשוניים. השערה זו היא אחת מן הבעיות הפתוחות המפורסמות בתורת המספרים ובמתמטיקה בכלל.

מתמטיקאים מאמינים שאכן ישנם אינסוף זוגות של ראשוניים תאומים, בגלל שורה של נימוקים היוריסטיים המבוססים על תכונות סטטיסטיות של המספרים הראשוניים, ובגלל עדויות מספריות התומכות בהשערת הארדי-ליטלווד הראשונה (ראו להלן). עם זאת, להשערה עדיין אין הוכחה.

מספרם של הראשוניים התאומים

ידוע שאם מסכמים את ההופכיים של כל המספרים הראשוניים, , הטור מתבדר וסכומו אינסופי. ליתר דיוק, הסכום שווה בקירוב ל- . תוצאה זו מתאימה למשפט המספרים הראשוניים, שלפיו ישנם כ- ראשוניים הקטנים מ- .

בניגוד לכך, הראה ויגו ברון בשנת 1915, באמצעות פיתוח של שיטת הנפה המודרנית, שמספר המספרים הראשוניים התאומים הקטנים מ-x אינו עולה על עבור קבוע מסוים C > 0. מכאן נובע שאם מסכמים את ההפכיים של הראשוניים התאומים בלבד, הטור מתכנס לגבול סופי, הנקרא קבוע ברון.

לו הטור היה מתבדר, הייתה בידינו הוכחה של השערת המספרים הראשוניים התאומים. אבל מכיוון שהטור מתכנס, לא ידוע עדיין אם קיימים אינסוף מספרים ראשוניים תאומים או לא.

קבוע ברון יכול להיות מספר אי רציונלי אם יש מספר אינסופי של תאומים ראשוניים. ההערכה הטובה ביותר עד כה לערכו של קבוע זה ניתנה ב-2002 על ידי סכימת כל התאומים הראשוניים עד 1016 והוא: .

הפרשים חסומים

בשנת 2013, ארעה פריצת דרך חשובה, כאשר זאנג יטנג (אנ') הצליח להוכיח שיש אינסוף זוגות של ראשוניים שהפרשם קטן מ-70,000,000[1]. זאנג זכה בעקבות כך בפרס אוסטרובסקי לשנת 2013 ובפרס קול לשנת 2014.

פרויקט מרובה משתתפים שהוקם בעקבות עבודתו של זאנג הצליח להוריד את ההפרש ל-4680 ולאחר מכן ל-246[2]. James Maynard הוריד את ההפרש ל-600[3] באמצעות עידון של משפט בומביירי-וינוגרדוב. הכללה של שיטות אלה מאפשרת להראות שלכל m, יש אינסוף רווחים באורך הכוללים m ראשוניים[4].

השערת הארדי-ליטלווד הראשונה

בעוד שהשערת הראשוניים התאומים קובעת רק שישנם אינסוף זוגות של תאומים, השערת הארדי-ליטלווד הראשונה מנבאת את ההתפלגות של מספר הזוגות, בצורה אנלוגית למשפט המספרים הראשוניים.

ממשפט המספרים הראשוניים נובע שהסיכוי של מספר טבעי להיות ראשוני, כאשר בוחרים אותו באקראי מבין המספרים מ-1 עד x, הוא . אם הראשוניות של המספר a ושל המספר a+2 היו מאורעות בלתי תלויים, אז אפשר היה לצפות שהסיכוי של a להיות הקטן מבין צמד של ראשוניים תאומים הוא .

מתברר שניתוח זה הוא פשטני מדי: הוא מתעלם מכך שאם a הוא הקטן מבין ראשוניים תאומים, אז יש לו p-2 שאריות אפשריות בחלוקה במספר ראשוני קטן p, בעוד שאם a הוא ראשוני סתם, יש לו p-1 שאריות אפשריות.

ג. ה. הארדי וג'ון ליטלווד הציעו בשנת 1923 את ההשערה הבאה. נסמן ב- את מספר זוגות הראשוניים התאומים הקטנים מ־x; אז , כאשר C2 הוא קבוע המספרים הראשוניים התאומים המוגדר כמכפלה אינסופית

.

הכללות

k-יה של ראשוניים

ישנה השערה מפורסמת (הקרויה באנגלית the k-tuple conjecture), שלפיה ישנם לא רק זוגות של ראשוניים תאומים, אלא קבוצות של k ראשוניים בעלי כל קשר ליניארי אפשרי (פרט לאלו הנמנעים בגלל סיבות טריוויאליות, כגון a,a+2,a+4 שאחד מהם מוכרח להתחלק ב-3); לדוגמה, משערים שישנם אינסוף ראשוניי ז'רמן, כלומר זוגות של ראשוניים מהצורה . גם להשערה זו ישנה גרסה כמותית שנסחו הארדי וליטלווד.

לאחרונה (2004) הושגה התקדמות מסוימת בכיוון זה, כאשר בן גרין וטרנס טאו הוכיחו שישנן אינסוף שלשות של ראשוניים מהצורה a,a+d,a+2d (כאשר a ו- d אינם קבועים מראש), וגם אינסוף רביעיות, וכן לסדרות בכל אורך. עם זאת, השיטות שלהם אינן מסייעות בפתרון הבעיה שהוזכרה בפסקה הקודמת.

הצגת 2 כהפרש

השערת הראשוניים התאומים מבקשת, בניסוח אחר, להציג את המספר 2 כהפרש של זוג ראשוניים, באינסוף דרכים. בשנת 1849 העלה אלפונס דה פוליניאק השערה כללית יותר, שלפיה כל הפרש זוגי מתקבל אינסוף פעמים. כמו השערת התאומים הראשוניים, גם השערה זו נראית סבירה על-פי העדויות המספריות.

ויגו ברון הראה, בנוסף לתוצאות שלו שהוזכרו קודם לכן, שכל מספר זוגי אפשר להציג באינסוף דרכים כהפרש של שני מספרים בעלי לכל היותר תשעה גורמים. משפט של צ'ן ז'ינג רון (Chen Jing Run) קובע שכל מספר זוגי אפשר להציג באינסוף דרכים כהפרש בין מספר ראשוני ומספר בן לכל היותר שני מחלקים ראשוניים. שיטתו של צ'ן אפשרה לו להוכיח תוצאה דומה גם בהקשר להשערת גולדבך.

ההפרש בין ראשוניים עוקבים

נסמן ב- את ההפרש בין הראשוני לבין הראשוני הבא אחריו. לפי השערת התאומים הראשוניים, הערך אמור להתקבל אינסוף פעמים. נסמן ב- את הגבול התחתון של הסדרה .

ממשפט המספרים הראשוניים נובע שהערך הממוצע של הוא , ובמלים אחרות . פול ארדש הוכיח ב-1940 ש- , וזאת לאחר שהארדי וליטלווד עצמם הראו, עוד ב- 1926, ש- אם מניחים את השערת רימן המוכללת. בעשורים הבאים הוכיחו כמה תוצאות על הערך של קבוע זה, עד שב- 1986 הראה Maier ש- . בשנת 2005 הראו Goldston ואחרים, באמצעות וריאנט של שיטת הנפה שפיתח אטלה סלברג, שלמעשה .

לקריאה נוספת

  • An Introduction to the Theory of Numbers, G.H.Hardy and E.M.Wright, פרק 22.20
  • מרכוס דו סוטוי, המוזיקה של המספרים הראשוניים, הוצאת משכל, תרגם: אוריאל גבעון, 2006.

קישורים חיצוניים

הערות שוליים

  1. ^ רנה מרגלית, ‏חידת המתמטיקאי האלמוני - בדרך לפתרון השערת המספרים הראשוניים התאומים, באתר "אלכסון", 22 במאי 2013
    Maggie McKee, First proof that infinitely many prime numbers come in pairs, Nature, 14 May 2013
  2. ^ Bounded gaps between primes - Polymath1Wiki, michaelnielsen.org (באנגלית)
  3. ^ James Maynard, Small gaps between primes
  4. ^ (Primes in intervals of bounded length, Andrew Granville, Bull AMS 52(2), 171--222 (2015
הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0

32160183השערת המספרים הראשוניים התאומים