ניתוח שונות
יש לפשט ערך זה: הערך מנוסח באופן טכני מדי, וקשה להבנה לקהל הרחב.
| ||
יש לפשט ערך זה: הערך מנוסח באופן טכני מדי, וקשה להבנה לקהל הרחב. |
בסטטיסטיקה, ניתוח שונות חד כיווני (באנגלית: Analysis of variance, One Way ANOVA) הוא אוסף מודלים סטטיסטיים שמטרתו לנתח את ההבדלים בין קבוצת ממוצעים. אוסף המודלים פותח על ידי הסטטיסטיקאי רונלד פישר. ANOVA מרחיב את מבחן t ליותר משתי קבוצות, ולכן שימושי בעיקר בעבור השוואה בין שלושה ממוצעים או יותר.
הנחות המודל
נניח כי ישנן k קבוצות שונות שנרצה להשוות ביניהן. בכל קבוצה יש הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n_i} תצפיות, כך שהתצפית הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y_{i,j}} היא התצפית ה-j בקבוצה ה-i.
אזי המודל מניח כי התצפיות בקבוצה ה-i מתפלגות נורמלית סביב תוחלת השווה ל- , בסטיית תקן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma} . בכתיב מקוצר: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y_{ij}\sim N(\mu + \alpha_i, \sigma^2)} כלומר לכל קבוצה תוחלת שונה.
אפשר גם לפרק את הביטוי כך שנגדיר גורם של רעש המתפלג נורמלית סביב האפס, בסטיית תקן של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma} , ונוסיף אותו לתוחלת הקבוצה. בכתיב מקוצר נאמר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle Y_{ij}=\mu+\alpha_i+\varepsilon_{i,j}} , כאשר .
השערות המבחן
עבור השערת האפס, לא נניח הבדל בין תוחלות הקבוצות.
כלומר:
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle H_0 : \alpha_1=\ldots=\alpha_k;}
ועבור השערת H1 אחרת מכך.
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle H_1 : otherwise }
התפלגות הממוצעים היא: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline Y_i \sim N(\mu + \alpha_i, \sigma^2/n_i) }
ומכאן שהתפלגות ממוצע כלל הדגימות:
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline Y \sim N(\mu+ \sum_{i=1}^k {n_i \cdot\alpha_i} /N, \sigma^2/N)} .
חלוקת סכום הריבועים
נגדיר את סכומי הריבועים הבאים: עבור כל קבוצה i:
ובהתאם נגדיר: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle SSW = \sum_{i=1}^k SS_i} (סכום הריבועים בתוך הקבוצות)
סכום הריבועים בין הקבוצות:הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle SSB = \sum_{i=1}^k n_i \cdot (\overline Y_i - \overline Y)^2} וסה"כ סכומי הריבועים: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle SST = \sum_{i=1}^k \sum_{j=1}^{n_i} (Y_{i,j} -\overline Y)^2}
מפיתוח מתמטי נגיע לקשר
מבחן F
תחת השערת האפס, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{MSB}{MSW}=\frac{\left(\frac{SSB}{K-1}\right)}{\left(\frac{SSW}{N-K}\right)} \sim F_{k-1, N-k}} כאשר זוהי F זוהי התפלגות F.
מבחני POST HOC - השוואות אנליטיות
אם מבחן ניתוח השונות מצביע על כך שהאוכלוסיות שונות זו מזו, עולה השאלה בין אילו זוגות של אוכלוסיות יש הבדל מובהק. בשאלה זו עוסקים מבחן LSD של פישר (אנ'), מבחן הטווח של טוקי (אנ') ומבחנים נוספים.
קישורים חיצוניים
34061326ניתוח שונות