רזולוציה חופשית

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

באלגברה, רזולוציה חופשית היא רזולוציה באמצעות מודולים חופשיים. בדרך כלל מופיעות רזולוציות כאלה בהקשר הרחב יותר של רזולוציות פרויקטיביות, אבל לצורך חישוב מעשי יש לרזולוציות חופשיות יתרונות לא מבוטלים; אכן, עד שהובן תפקידם הכללי של המודולים הפרויקטיביים באלגברה הומולוגית (באמצע שנות ה-50 של המאה ה-20), נלמדו בעיקר רזולוציות חופשיות. רזולוציות חופשיות מילאו תפקיד מרכזי בעבודות של הילברט על שמורות פולינומיות.

הגדרה

יהי מודול מעל חוג . רזולוציה חופשית היא סדרה מדויקת מהצורה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dots F_n \rightarrow \dots \rightarrow F_1 \rightarrow F_0 \rightarrow M \rightarrow 0 } , שבה המודולים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_i} חופשיים. אם יש למודול רזולוציה סופית, האורך של הרזולוציה הקצרה ביותר (היינו, האינדקס האחרון הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} שעבורו הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_n\neq 0} ) הוא הממד ההומולוגי של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle M} . למשל, אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle M} חופשי, הממד ההומולוגי שלו הוא אפס. משפט ה-Syzygy של הילברט (שאותו הוא הוכיח בהקשר של שמורות פולינומיות) קובע שלכל חוג מנה מדורג של חוג פולינומים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} יש ממד הומולוגי סופי. למעשה, הממד ההומולוגי של מנה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle B} מקיים , עם שוויון באגף שמאל בדיוק כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle B } הוא חוג כהן-מקולי.

רזולוציה שבה הדרגה של כל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_i} היא הנמוכה ביותר האפשרית (תחת האילוץ שכך התקיים עבור המרכיבים הקודמים), נקראת רזולוציה מינימלית. רזולוציה כזו היא יחידה, והדרגות של המודולים המשתתפים בה הם מספרי בטי (אנ') של המודול. תכונות נוספות של הרזולוציה מוליכות להגדרות של חוג גורנשטיין, חיתוך מלא ועל-משטח.

תחום שלמות נתרי בעל התכונה שלכל מודול נוצר סופית יש רזולוציה חופשית סופית, הוא תחום פריקות יחידה[1].

מקורות

  • History of Homological Algebra, by Chuck Weibel; pp.797-836 in "The History of Topology", ed. I.M. James, Elsevier, 1999.

ראו גם

הערות שוליים

  1. ^ I. Kaplansky, Commutative Rings, Allyn and Bacon, Inc., Boston, 1970; Theorem 184.
הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0

28672592רזולוציה חופשית