עיגולי גרשגורן
באלגברה לינארית, עיגולי גרשגורן מסייעים להערכת גודל הערכים העצמיים של מטריצה, באמצעות חישוב פשוט.
המונח הוא על שמו של המתמטיקאי סמיון ארונוביץ גרשגורן (Семён Аранович Гершгорин), נולד כהירשהורן (הירשהאָרן בכתיב היידישאי).
תיאור פורמלי
תהא מטריצה מסדר מעל הממשיים או המרוכבים. נסמן . כלומר, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ R_i'(A)} הוא סכום הערכים המוחלטים של אברי השורה מספר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ i} , פרט לאיבר שנמצא באלכסון.
כעת, כל הערכים העצמיים של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ A} נמצאים באיחוד העיגולים הבא:
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \bigcup_{i=1}^n\left\{z\isin\mathbb{C}:|z-a_{ii}|\le R_i'(A)\right\}} .
הקבוצה המתוארת היא איחוד של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ n} עיגולים סגורים במישור המרוכב, שמרכז כל אחד מהם הוא אחד מאיברי האלכסון הראשי של , והרדיוס של כל עיגול הוא סכום הערכים המוחלטים של אברי השורה של המרכז, פרט לאיבר זה עצמו.
עוד אומר המשפט כי אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ k} מתוך העיגולים הללו יוצרים רכיב קשירות נפרד מ-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ n-k} העיגולים האחרים, הרי שאותו רכיב קשירות מכיל בדיוק הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ k} מבין הערכים העצמיים.
מסקנות
מטריצה בעלת אלכסון שולט (diagonal dominant matrix) היא מטריצה שבה הערך באלכסון (בערכו המוחלט) גדול מסכום יתר האיברים בשורתו (בערכם המוחלט), כלומר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \forall i: |a_{ii}|>R_i'(A)} . תוצאה מיידית של משפט גרשגורן היא: אם מטריצה היא בעלת אלכסון שולט אז המטריצה היא הפיכה. זאת מאחר שמטריצה היא הפיכה אם ורק אם 0 אינו ערך עצמי שלה, אבל שליטה אלכסונית חזקה מבטיחה שכל אחד מהעיגולים אינו מכיל את ראשית הצירים (כי המרחק של מרכזם מהראשית גדול מרדיוס העיגול).