באנליזה פונקציונלית, משפט רליך-קונדרשוב הוא משפט לגבי שיכון קומפקטי (כלומר, שיכון רציף שהוא גם אופרטור קומפקטי) בין שני מרחבי סובולב. המשפט קרוי על שם המתמטיקאי האיטלקי-אמריקאי פרנץ רליך והמתמטיקאי הרוסי ולדימיר קונדרשוב.
ניסוח המשפט
תהי
קבוצה פתוחה, חסומה וליפשיצית ויהי
.
נגדיר
.
אזי מרחב הסובולב
ניתן לשיכון רציף במרחב ה-Lp
ולשיכון קומפקטי במרחב
לכל
.
כלומר,
וגם
.
תוצאות
היות ששיכון הוא קומפקטי אם ורק אם אופרטור השיכון (הזהות) הוא אופרטור קומפקטי, נובע ממשפט רליך-קונדרשוב שלכל סדרה חסומה במידה שווה במרחב
קיימת תת-סדרה המתכנסת במרחב
. המסקנה הזאת ידועה כמשפט הבחירה של רליך-קונדרשוב.
משפט רליך-קונדרכוב שימושי להוכחת אי-שוויון פואנקרה[1] לפיו לכל
(כאשר
עומד בתנאי משפט רליך-קונדרכוב) מקיים:

כאשר הקבוע C תלוי רק בערך p ובתכונות הגאומטריות של
וכן

הוא הערך הממוצע של u בתחום
.
הערות שוליים
- ↑ Evans, Lawrence C. (2010). "§5.8.1". Differential Equations, Partial (2nd ed.). p. 290. ISBN 0-8218-4974-3.
שגיאות פרמטריות בתבנית:מיון ויקיפדיה
שימוש בפרמטרים מיושנים [ דרגה ] משפט רליך-קונדרשוב30647631