משפט רימן-רוך

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

במתמטיקה, ובמיוחד בגאומטריה אלגברית ובאנליזה מרוכבת, משפט רימן רוך הוא כלי חשוב המאפשר לחשב את המימד של מרחבי פונקציות מרומורפיות עם אפסים וקטבים נתונים על משטחי רימן קומפקטיים, ומאפשר להסיק את קיומן של פונקציות המוגדרות על המשטח, ומקיימות אילוצים מסוימים, שמספרם אינו עולה על הגנוס.

המשפט הוכח בשני חלקים. תחילה הוכיח ברנהרד רימן טענה הנקראת אי שוויון רימן, הנותנת צד אחד מטענת המשפט. לאחר מכן הוכיח אחד מתלמידיו, גוסטב רוך, את המשפט במלואו בשנות ה-50 של המאה ה-19.

מאוחר יותר הוכחו הכללות רבות של המשפט, בין היתר לעקומים אלגברים וליריעות אלגבריות מממדים גבוהים יותר.

המרחב (L(D

נניח כי X הוא משטח רימן קומפקטי, וכי D הוא מחלק על X. כזכור, מחלק D על משטח רימן קומפקטי הוא פשוט סכום סופי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,\sum_{i=1}^n c_i \cdot x_i} כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,c_i \in \mathbb{Z} } הם מספרים שלמים, והפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,x_i \in X} הן נקודות בX. הדרגה של D מוגדרת להיות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,\deg(D) = \sum_{i=1}^n c_i} .

יחס סדר חלקי על מחלקים

נניח כי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,D_1, D_2} הם שני מחלקים על X כך שמתקיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,D_2 = \sum_{i=1}^n d_i \cdot x_i} (כל שני מחלקים אפשר לכתוב עם אותם אינדקסים בדיוק משום שייתכן שהפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,c_i} או הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,d_i} שווים ל0 עבור אינדקסים מסוימים). נגדיר יחס הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \, \le } על המחלקים על X באופן הבא: נאמר ש הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle D_1 \le D_2} אם לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,1\le i \le n} מתקיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \, c_i \le d_i} . ניתן להראות שזהו יחס סדר חלקי על קבוצת המחלקים על X.

לדוגמה, אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \, x,y,z \in X} הן נקודות על X, והפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,D_1 = x +2y} , הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,D_2 = 3x+4y+5z} , אז מכיוון שהמקדם של כל נקודה בהפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,D_1} קטן או שווה מהמקדם של כל נקודה בהפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,D_2} , הרי שהפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle D_1 \le D_2} .

הגדרת המרחב (L(D

בהינתן מחלק D על משטח רימן קומפקטי X, מסמנים את שדה כל הפונקציות המרומורפיות על X ב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{M}(X)} . נשים לב ששדה הפונקציות המרומורפיות של X הוא מרחב וקטורי מעל שדה המספרים המרוכבים. נגדיר את המרחב (L(D שהוא תת-מרחב של שדה הפונקציות המרומורפיות באופן הבא:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,L(D) = \{f \in \mathcal{M}(X)^{\times} : (f) \ge -D\} \cup \{0\} }

כזכור, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,(f)} הוא המחלק המתאים לפונקציה המרומורפית f. רק לפונקציות מרומורפיות השונות מפונקציית ה0 מתאים מחלק, ולפיכך יש להוסיף את פונקציית ה0 על מנת לקבל מרחב וקטורי.

נסביר כעת את משמעות ההגדרה. לשם כך, נניח כי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \, y,z \in X} הן נקודות בX, ונניח כי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle D = 3\cdot y -4\cdot z} הוא מחלק על X. בדוגמה זו, המרחב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,L(D)} יכיל את פונקציית ה0 וכן את כל הפונקציות המרומורפיות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f \in \mathcal{M}(X)^{\times}} כך שמתקיים בפרט, לכל נקודה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,x \in X} כך שהפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,x \ne y} והפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \, x\ne z} מתקיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,(f) (x) \ge 0} . לפיכך לכל נקודה x כזאת, f הולומורפית בx. בנקודה y על f לקיים , ולפיכך לf יכול להיות קוטב בנקודה זו, כאשר סדר הקוטב הוא לכל היותר 3. בנקודה z על f לקיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,(f) (z) \ge 4} , ולפיכך בנקודה זו יש לf אפס מסדר 4 לפחות. כל פונקציה f שהיא פונקציה מרומורפית על X ואשר מקיימת את התנאים הללו תהיה שייכת למרחב (L(D עבור D הנ"ל.

באופן כללי, התנאים של השתייכות למרחבי (L(D עבור פונקציה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \, f \ne 0} הם תנאים מ3 הסוגים הבאים:

  1. עבור נקודות x שעבורן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,D(x) = 0} , על f להיות הולומורפית בנקודה x.
  2. עבור נקודות x שעבורן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,D(x) = n > 0} , בנקודה x לפונקציה f מותר שיהיה קוטב מסדר לכל היותר n.
  3. עבור נקודות x שעבורן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,D(X) = -n <0} , בנקודה x לפונקציה f חייב להיות אפס מסדר n לפחות.

ניתן להראות כי (L(D הוא מרחב וקטורי ממימד סופי מעל שדה המספרים המרוכבים. משפט רימן רוך מאפשר לחשב את המימד של (L(D.

משפט רימן רוך

נניח כי X משטח רימן קומפקטי, D הוא מחלק על X וכי הגנוס של X הוא g. אי שוויון רימן נותן חסם תחתון למימד של (L(D על ידי:

לעומת זאת, משפט רימן רוך מאפשר לחשב במדויק את המימד של (L(D באמצעות הנוסחה הבאה:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \, \dim L(D) = \dim \mathcal{H}^1(X,\mathcal{O}_D) + 1 -g +\deg D}

כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{H}^1(X,\mathcal{O}_D)} היא קוהומולוגיית צ'ך הראשונה של האלומה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,\mathcal{O}_D} .

האלומה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,\mathcal{O}_D}

בהסתמך על הגדרת המרחב הווקטורי (L(D, בהינתן מחלק D על משטח רימן קומפקטי X, נגדיר אלומה שתסומן על ידי , אשר תאפשר להסיק מידע גלובלי ממידע מקומי על המרחב (L(D. בהינתן קבוצה פתוחה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle U \subseteq X} נגדיר את הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,\mathcal{O}_D(U)} להיות אוסף הפונקציות המרומורפיות על U, שביחס לקבוצה הפתוחה U שייכות ל(L(D. בצורה מדויקת, ההגדרה היא:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{O}_D(U) = \{f \in \mathcal{M}(U): (f) (x) \ge -D(x), \forall x \in U\}} כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \,\mathcal{M}(U)} מסמן את שדה הפונקציות המרומורפיות על U. נזכור כי U כתת-קבוצה פתוחה של משטח רימן היא בעצמה משטח רימן, ולכן יש למושג שדה הפונקציות המרומורפיות על U את משמעותו הרגילה. הומומוריפזמי הצמצום הם צמצומים רגילים של פונקציות. מכיוון ששייכות לקבוצה זו הוגדרה באמצעות תכונה מקומית, הרי שקל לוודא שאקסיומת ההדבקה מתקיימת וזוהי אכן אלומה של מרחבים וקטורים.

ראו גם