משפט בנך-אלאוגלו

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

משפט בנך-אלאוגלו (Banach-Alaoglu theorem) הוא משפט באנליזה פונקציונלית, האומר כי כדור יחידה במרחב הדואלי הוא קומפקטי בטופולוגיה החלשה עליה.

הוכחה שהמשפט מתקיים במרחב ספרבילי נורמי ניתנה בשנת 1932 על ידי סטפן בנך, ובשנת 1940 ניתנה הוכחה כוללת על ידי לאונידס אלאוגלו.

כיוון שהוכחת המשפט נעשית באמצעות משפט טיכונוף, היא מתבססת על אקסיומת הבחירה.

הטופולוגיה החלשה-* המוגדרת על המרחב הדואלי למרחב וקטורי טופולוגי

יהי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} מרחב וקטורי טופולוגי נורמי (למשל מרחב בנך), ויהי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X^*} המרחב הדואלי שלו.

נשים לב כי כל מרחב X כנ"ל, משוכן באופן קנוני במרחב הדואלי למרחב הדואלי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ X^*} , על ידי אופרטורי הערכה בנקודה.

כלומר לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x \in X} , נגדיר אופרטור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_{x} } שיפעל על הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ X^*} באופן הבא - לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ f \in X^*} יתקיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_{x} (f) = f(x)} . קל לראות כי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_{x} } פונקציונאל לינארי רציף, וההתאמה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x \mapsto T_{x} } מהווה שיכון איזומטרי.

הטופולוגיה החלשה-* (קרי חלשה-כוכב,weak-star באנגלית) על המרחב הדואלי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ X^*} , מוגדרת כטופולוגיה החלשה ביותר כך שאופרטורי הערכה בנקודה המתוארים מעלה רציפים.

באופן שקול, ניתן לכל אופרטור הערכה כזה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ T_{x} } להגדיר סמינורמה על הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ X^*} על ידי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \rho_{x}(f)=|f(x)| } , לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ f\in X^*} , והטופולוגיה החלשה-* היא הטופולוגיה המושרית על ידי משפחת הסמינורמות הללו.

נשים לב כי טופולוגיה זו חלשה מהטופולוגיה המקורית, כלומר כל קבוצה פתוחה בטופולוגיה החלשה-* היא אכן פתוחה בטופולוגיה המקורית.

משפט בנך-אלאוגלו

יהי X מרחב בנך. כדור היחידה הסגור של המרחב הדואלי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ X^*} , ביחס לטופולוגיה הנורמית שלו (המתקבלת מהנורמה האופרטורית), הוא קומפקטי ביחס לטופולוגיה החלשה-*.

הוכחת המשפט

לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ x \in X} נגדיר אינטרוול הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ I_x = \left[ -\|x\| , \|x\| \right] } ונסתכל במרחב מכפלת טיכונוף שלהם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ K = \prod_{x \in X}{I_x}} . לומר שפונקציונל f נמצא בכדור היחידה זה שקול לומר שהגרף של הפונקציונל הלינארי f עובר בתוך כל אינטרוול ולא יוצא ממנו, כלומר: הגרף של f הוא "קו" שנמצא כולו בין קצוות ה"רצועה" שנוצרה על ידי האינטרוולים. בנוסחה, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ | f(x) | \le \| x \| \iff f \in D(X^*)} כאשר D מסמל את כדור היחידה. לכן אפשר לשכן את כדור היחידה D בתוך K.

לפי משפט טיכונוף K הוא קומפקט (קבוצה קומפקטית סגורה) כמכפלה של מרחבים קומפקטיים (כל אינטרוול הוא קומפקט כי מדובר בקבוצה סגורה וחסומה במרחב האוקלידי).

כדי להוכיח ש-D הוא קומפקט מספיק להראות שזו קבוצה סגורה, אך זה ברור מאחר שלינאריות היא תכונה סגורה וכל פונקציונל ניתן להגדיר על ידי חיתוך כל התנאים הסגורים מהצורה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ f( x_1 + x_2) = f(x_1) + f(x_2) \ , \ f(ax) = a f(x)} ויש משפט בטופולוגיה הקובע שחיתוך כלשהו של קבוצות סגורות הוא קבוצה סגורה. הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \blacksquare}

ראו גם


הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0

משפט_בנך-אלאוגלו20293279Q537618