מטריצת תמורה

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

בתורת המטריצות, מטריצת תמורה היא מטריצה ריבועית בינארית שמכילה בדיוק אחדה אחת בכל שורה ובכל עמודה ואפסים בכל המקומות האחרים. כל מטריצה כזאת מייצגת תמורה של איברים, וכאשר מכפילים אותה במטריצה אחרת , גורמת לערבוב השורות (בכפל מלפני, כלומר ) או העמודות (בכפל מאחרי, כלומר ) של המטריצה .

כיוון שבמטריצת תמורה יש בדיוק אחדה אחת בכל שורה או עמודה, ניתן להיעזר בדימוי מתחום השחמט כדי להבין איך היא נראית; אוסף מטריצות התמורות נמצא בהתאמה חד-חד ערכית עם אוסף ההעמדות של צריחים על לוח בגודל כך שאף אחד לא יאיים על השני, כאשר מיקומי הצריחים מתאימים למיקומי האחדות במטריצות התמורה. מקומבינטוריקה עולה שיש מטריצות תמורה, כגודל החבורה הסימטרית .

הגדרה

בהינתן תמורה של איברים,

המיוצגת בסימון שתי שורות כ-

ישנן שתי דרכים טבעיות לקשר בין תמורה למטריצת תמורה; כאשר מתחילים ממטריצת הזהות מסדר , כלומר , אז ניתן לבצע תמורה על עמודות או שורות המטריצה, בהתאם ל-. מאמר זה ידון רק באחת מההצגות הללו, כאשר האחרת תוזכר רק אם יש הבדל ביניהן שיש להיות מודעים אליו.

למטריצת התמורה מסדר , כלומר , המתקבלת מערבוב העמודות של מטריצת הזהות , כלומר הפועלת כך שלכל , מתקיים אם ו-0 אחרת, נתייחס כהצגת העמודות בערך זה. כיוון שהאיברים בשורה כולם 0 למעט ה-1 שמופיע בעמודה , ניתן לכתוב

כאשר , וקטור בסיס סטנדרטי, מסמן וקטור שורה באורך עם 1 במיקום ה-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} ו-0 בכל מיקום אחר.

לדוגמה, מטריצת התמורה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_{\pi}} המתאימה לתמורה: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi=\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 2 & 5 & 3 \end{pmatrix},} , היא:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_\pi = \begin{bmatrix} \mathbf{e}_{\pi(1)} \\ \mathbf{e}_{\pi(2)} \\ \mathbf{e}_{\pi(3)} \\ \mathbf{e}_{\pi(4)} \\ \mathbf{e}_{\pi(5)} \end{bmatrix} = \begin{bmatrix} \mathbf{e}_{1} \\ \mathbf{e}_{4} \\ \mathbf{e}_{2} \\ \mathbf{e}_{5} \\ \mathbf{e}_{3} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}. }

ניתן להבחין בכך שהעמודה ה- של מטריצת הזהות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle I_5} מופיעה כעת כעמודה ה-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi(j)} של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_{\pi}} .

תכונות אלגבריות

הכפלת הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_{\pi}} בווקטור עמודה g תערבב את השורות של הווקטור:

שימוש חוזר בתוצאה הזאת מראה שאם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle M} היא מטריצה במידות מתאימות, המכפלה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_{\pi} M} היא פשוט תמורה של השורות של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle M} .

המטריצה ההופכית של מטריצה תמורה שווה למטריצה המשוחלפת שלה, כלומר: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_{\pi}^{-1} = P_{\pi^{-1}} = P_{\pi}^{\mathsf T}} .

העקבה של מטריצת תמורה היא מספר נקודות השבת של התמורה. אם למטריצה יש נקודות שבת, אז היא ניתנת לכתיבה בצורה ציקלית כ-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi = (a_1)(a_2)\dots(a_k)\sigma} , כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma} היא תמורה ללא נקודות שבת, ו- הם וקטורים עצמיים של מטריצת התמורה (אלו הם וקטורי השבת).

כדי לחשב את הערכים העצמיים של מטריצת תמורה נתונה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_{\sigma}} , נכתוב את הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma} כמכפלה של תמורות ציקליות, כלומר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma= C_{1}C_{2} \cdots C_{t}} . יהיו האורכים של המחזורים הללו הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle l_{1},l_{2}...l_{t}} בהתאמה, ויהי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_{i} (1 \le i \le t)} אוסף הפתרונות המרוכבים של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^{l_{i}}=1} (כלומר שורשי היחידה מסדר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle l_{i}} ). אז האיחוד של כל ה-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_{i}} -ים הוא אוסף הערכים העצמיים של מטריצת התמורות המתאימה. הריבוב הגאומטרי של כל ערך עצמי שווה למספר ה-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle R_{i}} -ים שמכילים אותו.

מתורת החבורות ידוע שכל תמורה ניתנת להצגה כהרכבה של חילופים. לפיכך כל מטריצת תמורה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle P} ניתנת לפירוק כמכפלה של מטריצות אלמנטריות המחליפות שתי שורות, אשר לכל אחת יש דטרמיננטה 1-. לפיכך, מכפליות הדטרמיננטה מקבלים שהדטרמיננטה של כל מטריצת תמורה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle P} היא 1 או 1- בהתאם לזוגיות התמורה.

ראו גם

קישורים חיצוניים

ויקישיתוף מדיה וקבצים בנושא מטריצת תמורה בוויקישיתוף
הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0

32714907מטריצת תמורה