קיטוב חשמלי
באלקטרומגנטיות, קיטוב חשמלי או פּוֹלָרִיזַצְיָה חשמלית (באנגלית: Electrical Polarization) היא המדד של קיטוב החומר (הפרדה בין מטענים חיוביים לשליליים בתוך החומר) ברמה המיקרוסקופית. מתמטית, הפולריזציה מתוארת על ידי וקטור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \vec{P}\ } ששווה לצפיפות של הדיפולים החשמליים בחומר, כלומר מומנט הדיפול הכולל של החומר הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \int dV\,\vec{P}\ } . דהיינו, הפולריזציה גדולה יותר ככל שהדיפולים חזקים יותר, או לחלופין ככל שהם צפופים יותר.
פולריזציה היא תכונה של חומר דיאלקטרי הנמצא בתוך שדה חשמלי, והיא יחסית בקירוב לגודל השדה. הפולריזציה היא וקטור שכיוונו בחומר יכול להיות שונה מכיוון השדה החשמלי.
הגדרת הפולריזציה
עבור חומר דיאלקטרי לא טעון חשמלית, כל נפח שנחתוך מתוך החומר יהיה נייטרלי כאשר סוכמים את כל המטענים הקשורים שבו. לפיכך צריכה להיות לצפיפות המטען הקשור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \rho'\ } תכונה מיוחדת: על כל צורה שהיא של חומר דיאלקטרי. ניתן "לארגן" זאת על ידי שנגדיר כי יש איזה שדה וקטורי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \vec{P}\ } כך שאותו שדה קיים רק בתוך החומר ו-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \rho'=-\vec{\nabla}\cdot\vec{P}\ } . במקרה כזה אפשר להשתמש במשפט הדיברגנץ ולקבל
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \int dV\,\rho' = -\int dV\,\vec{\nabla}\cdot\vec{P} = \oint d\vec{a}\cdot\vec{P} \equiv 0 }
כאשר אנו מגדירים שהאינטגרל על "השפה" נלקח מעט מחוץ לחומר בתחום שבו לפי הגדרה. מהדיון שלעיל הגדרת הפולריזציה היא מופשטת במקצת: "הווקטור שהדיברגנץ שלו נותן את המטענים הקשורים". אנו נראה מיד כי הגדרה זו מתיישבת עם ההגדרה הראשונית של "צפיפות הדיפול".
הקשר לשדה חשמלי
בחומר הומוגני ואיזוטרופי, כוון הפולריזציה זהה לכוון השדה החשמלי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \vec E} וגודלה יחסי לגודל השדה:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \vec P=\varepsilon_0\chi\vec E}
כאן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \varepsilon_0} הוא המקדם הדיאלקטרי של הריק, ו-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \chi} היא הסוספטיביליות החשמלית של החומר.
בחומר לא איזוטרופי (תלוי כוון), כוון הפולריזציה לא מקביל לשדה, ולכן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \chi} הוא טנזור. פירוק הנוסחה לרכיבים ייתן:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ P_i = \epsilon_0\sum_j\chi_{ij} E_j}
בחומר שאינו ליניארי הפולריזציה אינה יחסית לשדה, וניתן לרשום אותה כפולינום של השדה:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_i / \epsilon_0 = \sum_j \chi^{(1)}_{ij} E_j + \sum_{jk} \chi_{ijk}^{(2)} E_j E_k + \sum_{jk\ell} \chi_{ijk\ell}^{(3)} E_j E_k E_\ell + \cdots \!}
מטענים קשורים וחופשיים
המבנה המיקרוסקופי של חומרים דיאלקטריים בנוי ממספר גדול של מטענים חיוביים ושליליים שמאורגנים בצורה מסוימת שאופיינית לחומר. הכוחות המיקרוסקופיים שמחזיקים אותם בצורה זו חזקים בהרבה מכוחות חשמליים חיצוניים שאפשר להפעיל על החומר בדרך כלל. לפיכך, כאשר החומר מושם בשדה חשמלי, המטענים החיוביים זזים מעט בכיוונו של השדה, והשליליים זזים מעט בכיוון ההפוך, כלומר החומר מתקטב. מטענים אלה נקראים באלקטרוסטטיקה מטענים קשורים, להבדיל ממטענים חופשיים, שהם מטענים חיצוניים שלא שייכים למבנה של החומר. אנו נסמן כאן את צפיפות המטען החופשי ב- ואת צפיפות המטען הקשור ב-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \rho'\ } .
הפולריזציה כצפיפות הדיפול
בהינתן חומר דיאלקטרי בעל צורה מסוימת, שאין בו שום מטענים חופשיים, כלומר הוא נייטרלי, ניתן לחשב את מומנט הדיפול שלו כך:
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \vec{p}=\int dV\,\vec{r}\rho'(\vec{r})=-\int dV\,\vec{r}(\vec{\nabla}\cdot\vec{P})\ }
כדי להשלים את ההוכחה כדאי להשתמש באינדקסים,
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle p_{i}=-\int dVx_{i}\partial_{j}P_{j}=-P_{j}x_{i}|+\int dV\, P_{j}\partial_{j}x_{i}=\int dV\, P_{j}\delta_{ij}=\int dV\, P_{i} } איבר השפה נעלם משום שהפולריזציה היא אפס מחוץ לחומר ולכן אנו נותרים עם , ולפיכך הפירוש של "צפיפות הדיפול" אכן מוצדק.
הפולריזציה כאמצעי עזר לפתרון בעיות
המטען הכולל הוא סך כל המטענים, החופשיים והקשורים. לפיכך, השדה החשמלי מקיים את חוק גאוס
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{\nabla}\cdot\vec{E}=4\pi(\rho+\rho') }
כלומר,
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \vec{\nabla}\cdot\vec{E}=4\pi\rho-4\pi\vec{\nabla}\cdot\vec{P} \ }
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \vec{\nabla}\cdot(\vec{E}+4\pi\vec{P})=4\pi\rho\ }
מגדירים את שדה העזר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \vec{D}\equiv\vec{E}+4\pi\vec{P}\ } וכך מתקבל מעין חוק גאוס חדש, שיתרונו בכך שרק המטענים החופשיים מופיעים בו,
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \vec{\nabla}\cdot\vec{D}=4\pi\rho\ }
מאחר שהמטענים החופשיים הם בדרך כלל מה שידוע, יש תועלת רבה בהגדרה הזו כאשר רוצים לפתור בעיות באלקטרוסטטיקה, וזו אחת התועלות הגדולות שבהגדרת הפולריזציה.
ראו גם
קישורים חיצוניים
מיזמי קרן ויקימדיה |
---|
ערך מילוני בוויקימילון: פולריזציה |
22834189קיטוב חשמלי