תנאי הלדר (Hölder condition) הוא תנאי על פונקציות רציפות, המאפיין את מידת הרציפות שלהן. תנאי זה מרחיב את תנאי ליפשיץ. קרוי על-שם המתמטיקאי הגרמני אוטו הלדר.
הגדרה
פונקציה
עבור תחום פתוח
מקיימת את תנאי הלדר ביחס לזוג קבועים
, אם לכל
מתקיים
.
באופן כללי יותר, עבור זוג מרחבים מטריים
, פונקציה
מקיימת את תנאי הלדר ביחס לזוג קבועים
, אם לכל
מתקיים
.
תכונות
- אם פונקציה מקיימת את תנאי הלדר ביחס לקבוע
, אז היא רציפה באותו תחום.
- אם פונקציה מקיימת את תנאי הלדר ביחס לקבוע
, משמע היא חסומה.
- מהקמירות של הפונקציה
, עבור כל
, נובע שאם פונקציה ממרחב נורמי כלשהו מקיימת את תנאי הלדר עבור
היא בהכרח קבועה. הטענה אינה נכונה כאשר
מרחב מטרי כלשהו.
- תנאי הלדר עם קבוע
נקרא תנאי ליפשיץ.
אנליזה פונקציונלית
אוסף הפונקציות המקיימות את תנאי הלדר עבור מעריך מסוים
מעל קבוצה פתוחה
במרחב האוקלידי מהווה מרחב וקטורי ומסומן
. אוסף הפונקציות שהנגזרת ה-n-ית שלהן מקיימות את תנאי ליפשיץ באותו התחום מסומן:
, וגם הוא מרחב וקטורי.
על המרחבים האלו מוגדרת סמי-נורמה טבעית (כאשר ב-
ההגדרה יותר מורכבת וכוללת גם את הנגזרות):

תנאי הלדר19206462Q1537963