קוואזי-איזומטריה
בטופולוגיה של מרחבים מטריים, קוואזי-איזומטריה היא פונקציה ממרחב מטרי X למשנהו Y, השומרת על המבנה המטרי באופן רופף, במובן הבא:
- קיימים קבועים כך שלכל מתקיים ו- ; ובנוסף לזה,
- לכל קיימת נקודה כך ש- .
משמעות התנאי הראשון היא שלפונקציה מותר לשנות את המרחק בין נקודות, אבל במידה מתונה בלבד; בפרט, אם המרחק בין נקודות גדל לאינסוף, כך גם המרחק בין התמונות שלהן. התנאי השני מכריח את הפונקציה לכסות חלק משמעותי מן המרחב השני: כל נקודה ב- Y נמצאת במרחק C לכל היותר מנקודה שהגיעה מ-X.
מרחבים שיש ביניהם קוואזי-איזומטריה הם מרחבים קוואזי-איזומטריים. זהו יחס שקילות: הרכבה של קוואזי-איזומטריות היא קוואזי-איזומטריה, ולכל קוואזי-איזומטריה מ-X ל-Y יש קוואזי-איזומטריה בכיוון ההפוך, מ-Y ל-X. מרחבים איזומטריים הם בפרט קוואזי-איזומטריים.
קוואזי-איזומטריה מודדת את המבנה של המרחב בקנה מידה גדול בלבד. למשל, כל מרחב קוואזי-איזומטרי למרחב המתקבל כשמוציאים ממנו כדור (גדול ככל שיהיה). בפרט, כל המרחבים החסומים קוואזי-איזומטריים זה לזה.
קוואזי-איזומטריה של חבורות
לכל חבורה, ובפרט כאלה שהן אינסופיות אבל נוצרות סופית, אפשר להתאים את גרף קיילי שלה ביחס לקבוצת יוצרים (סופית) נתונה; גרף כזה אפשר להפוך באופן טבעי למרחב גאודזי. שינוי של קבוצת היוצרים משנה את הגרף, אבל כל הגרפים המתקבלים באופן כזה עבור חבורה נתונה הם קוואזי-איזומטריים זה לזה. אפילו גרפי קיילי של כל שתי חבורות בעלות מידה משותפת הם קוואזי-איזומטריים זה לזה. אמנם, גם לחבורות שאינן בעלות מידה משותפת יכולים להיות גרפי קיילי קוואזי-איזומטריים, ובכל זאת, מבנה הגרף - עד כדי קוואזי-איזומטריה - מלמד רבות על החבורה. אם G ו-H נוצרות סופית ויש להן גרפי קיילי קוואזי-איזומטריים, ואם G היא סופית, בעלת הצגה סופית, דמוי-אבלית, דמוי-נילפוטנטית, דמוי-חופשית, אמנבילית או היפרבולית, אז H מקיימת את אותה תכונה[1]. מאידך, יש דוגמאות לחבורה פתירה נוצרת סופית, וחבורה שאינה דמוי-פתירה, עם גרפי קיילי קוואזי-איזומטריים. גם תכונת T של קשדן אינה נשמרת תחת קוואזי-איזומטריה של החבורות.
ראו גם
הערות שוליים
- ^ Survey on geometric group theory, Wolfgang Luck, 2008.