משפט הבסיס של הילברט

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

במתמטיקה, משפט הבסיס של הילברט (Hilbert) קובע שאם חוג נתרי, אז גם חוג הפולינומים (במספר סופי של משתנים מרכזיים) מעל R מקיים את אותה תכונה. בפרט, אם הוא שדה, אז כל אידיאל בחוג הפולינומים ב-n משתנים נוצר על ידי מספר סופי של פולינומים. את המשפט הוכיח דויד הילברט בשנת 1888.

בשפה של גאומטריה אלגברית ניתן לנסח את המשפט כך: כל יריעה אלגברית ניתנת לתיאור כקבוצת האפסים המשותפים של מספר סופי של פולינומים.

המשפט תקף לגבי חוג בסיס לאו דווקא קומוטטיבי, ואזי את תכונת הנותריות יש להחליף באחת מבין התכונות: נותריות שמאלית, ימנית או חלשה (תנאי השרשרת העולה על אידיאלים דו-צדדיים). כל אחת מהן 'עולה' מ- ל-.

למשפט גרסה במשתנים לא-קומוטטיביים אותה הוכיח שמשון עמיצור: באלגברה החופשית במספר סופי של יוצרים מעל תחום קומוטטיבי נותרי, כל שרשרת של אידיאלים ראשוניים שהמנות ביחס אליהם משוכנות במטריצות מעל חוג קומוטטיבי (מסדרים חסומים – כלומר דרגות PI חסומות) מתייצבת[1].

למקרה של חוגי פולינומים מעוותים (skew-polynomial rings) ניתנו מספר הרחבות, בידי Singh ואחרים.

הוכחה

יהי חוג נתרי שמאלי. נניח בשלילה שהחוג אינו נתרי שמאלי. לכן קיים אידיאל שמאלי שאינו נוצר סופית. נבנה סדרה של פולינומים באופן רקורסיבי: תחילה נבחר פולינום ב- ממעלה מינימלית. יהי מספר טבעי, ונניח שנתונים האיברים . יהי האידיאל השמאלי הנוצר על ידי . נבחר את להיות איבר כלשהו של ממעלה מינימלית. איבר כזה קיים לפי ההנחה ש- לא נוצר סופית. מכאן שהסדרה היא סדרה לא יורדת של שלמים אי שליליים. יהי המקדם המוביל של ויהי האידיאל השמאלי של הנוצר על ידי . מכיוון ש- חוג נתרי, שרשרת האידיאלים מתייצבת. לכן קיים טבעי שעבורו . בפרט קיימים איברים כך ש-.

נגדיר את הפולינום: . ל- ול- יש אותה מעלה ואותו מקדם מוביל. יתר על כן, . מצד שני, . לכן והמעלה שלו קטנה יותר מזו של , בסתירה למינימליות.

לקריאה נוספת

  • Lang, Serge (1997). Algebra, 3rd ed., reprint w/ corr., Addison-Wesley. מסת"ב 978-0-201-55540-0.

הערות שוליים

  1. ^ A NONCOMMUTATIVE HILBERT BASIS THEOREMAND SUBRINGS OF MATRICES by Shimshon Avraham Amitsur (Transactions of the American Mathematical Society).
ערך זה הוא קצרמר בנושא מתמטיקה. אתם מוזמנים לתרום למכלול ולהרחיב אותו.
הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0

31028544משפט הבסיס של הילברט