משפט בלוך

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש
סכימה של גל בלוך במימד אחד (רק החלק הממשי של הגל)
גל בלוך שווה פוטנציאל בשריג סיליקון

משפט בלוך בפיזיקת המצב המוצק מאפיין את פונקציית הגל של חלקיק בפוטנציאל מחזורי, דוגמת אלקטרון הנע בגביש מחזורי. פונקציות גל אלו מכונות פונקציות בלוך.

המשפט קרוי על שם הפיזיקאי פליקס בלוך שפרסם אותו בשנת 1928[1].

למשפט שימושים וחשיבות רבה בפיזיקת המצב המוצק, לדוגמה לגבי מבנה הפסים במתכות.

ניסוח מתמטי

למשפט מספר ניסוחים שקולים.

ניסוח 1

נתון המילטוניאן מן הצורה:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{H} = \frac{\vec p^2}{2m} + V(\vec r) }

כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(\vec r) } פוטנציאל מחזורי עם מחזוריות של סריג כלשהו, כלומר עבור כל וקטור בסריג ועבור הזזה סריגית , מתקיים: .
אזי, הפונקציות העצמיות של ההמילטוניאן ניתנות לרישום כ:

כאשר גם ל- יש את אותה המחזוריות של הסריג: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_{n\vec k} (\vec r+\vec R) = u_{n\vec k} (\vec r)} לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec r } בסריג ולכל הזזה סריגית הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec R } .

ניסוח 2

בהינתן המילטוניאן כנ"ל, קיים וקטור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec k } , כך שהפונקציות העצמיות של ההמילטוניאן מקיימות:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(\vec r+\vec R) = e^{i\vec k \cdot \vec R} \psi (\vec r)}

לכל הזזה סריגית הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec R } .

הוכחה

כיוון שהפוטנציאל אינווריאנטי להזזה בווקטור סריג, ההמילטוניאן חילופי עם אופרטורי הזזה בווקטור סריג, המוגדרים על ידי: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_{\vec R} f(\vec r) = f(\vec r + \vec R) } . כמו כן אופרטורי ההזזה הנ"ל חילופיים זה עם זה. לפיכך ניתן למצוא פונקציות עצמיות משותפות להמילטוניאן ולאופרטורי ההזזה. כלומר, ניתן לבחור את הפונקציות העצמיות של ההמילטוניאן כך שיקיימו:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_{\vec R} \psi (\vec r) = C(\vec R) \psi (\vec r) }

כיוון שהזזה ב- ואחריה הזזה ב-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec R_1 } שקולה להזזה ב-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec R_1 + \vec R_2 } , מתקיים:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle C(\vec R_1 + \vec R_2) \psi (\vec r) = T_{\vec R_1 + \vec R_2} \psi (\vec r) = T_{\vec R_1} T_{\vec R_2} \psi (\vec r) = C(\vec R_1) C(\vec R_2) \psi (\vec r)}

ומכאן ש: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle C(\vec R_1 + \vec R_2) = C(\vec R_1) C(\vec R_2) } . הפונקציה היחידה בעלת תכונה זו היא אקספוננט, ולכן: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle C(\vec R) = e^{i\vec k \cdot \vec R} } . לסיום:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi (\vec r+\vec R)=T_{\vec R} \psi(\vec r) = C(\vec R)\psi(\vec r) = e^{i\vec k \cdot \vec R} \psi(\vec r) }

וזה הניסוח השני של המשפט.

בנוסף להוכחה שהוצגה כאן, קיימות הוכחות אחרות, בהן בונים באופן מפורש את הפונקציות העצמיות.

לקריאה נוספת

  • Felix Bloch, "Über die Quantenmechanik der Elektronen in Kristallgittern," Z. Physik 52, 555-600 (1928).
  • Ashcroft and Mermin, Solid state physics (chapter 8)

הערות שוליים

  1. ^ יש לציין כי תכונות דומות של פתרונות של משוואות דיפרנציאליות היו ידועות בתקופה מוקדמת יותר