מישור מור

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

בטופולוגיה, מישור מור הוא דוגמה למרחב טופולוגי ספרבילי המקיים את תכונת האוסדורף, שאינו קומפקטי מקומית ואינו נורמלי. זוהי דוגמה פשוטה יחסית, ולכן נוח להיעזר בה כדוגמה נגדית לתופעות טופולוגיות שונות.

הגדרה

הטופולוגיה המאפיינת את מישור מור מוגדרת על המחצית העליונה של המישור האוקלידי הרגיל: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle M = \left\{ (x,y) \in \mathbb{R}^2 : y \ge 0 \right\}} . המבנה הטופולוגי מוגדר באופן הבא: קבוצה פתוחה היא קבוצה המכילה, יחד עם כל נקודה שלה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle p=(a,b)} , כדור מתאים:

  • כדור מהצורה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_r(a,b)=\{(x,y): (x-a)^2+(y-b)^2<r\}} עבור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0<r} , אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle b>0} ;
  • או קבוצה מהצורה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{(a,b)\}\cup \{(x,y): (x-a)^2+(y-r)^2<r\}} עבור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0<r} , אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle b=0} .

למעט הישר הממשי, הטופולוגיה היא מטרית: חצי המישור הפתוח הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle M = \left\{ (x,y) : y >0 \right\}} הוא תת-מרחב מטריזבילי. לעומת זאת, בנקודה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (a,0)} שעל הישר, אפשר להרכיב בסיס מקומי מן הקבוצות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{(a,0)\}\cup B} , כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle B} מייצג כדורים מהצורה הפענוח נכשל (שגיאת המרה. השרת ("https://wikimedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle B_{r}(a,r)} , המשיקים לישר הממשי באותה נקודה. בטופולוגיה הרגילה, הנקודה אינה נקודת פנים של אף אחד מן הכדורים האלה.

תכונות

המרחב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle M} הוא ספרבילי, אבל תת-המרחב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} המורכב מן הנקודות על ציר ה-x הוא בעל טופולוגיה דיסקרטית, ובפרט (מכיוון שזו קבוצה שאינה בת מנייה) אינו ספרבילי. המרחב אינו קומפקטי, ואף אינו קומפקטי מקומית.

הוא מקיים את אקסיומת המנייה הראשונה אבל לא את תכונת לינדלוף. (ולכן אינו מקיים את אקסיומת המנייה השנייה). המרחב הוא מרחב האוסדורף, ואף מקיים את תכונת ההפרדה T3, אבל אינו נורמלי.

הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0

מישור מור28287311Q839999