מורפיזם אפס
במתמטיקה, ובמיוחד בתורת הקטגוריות, מורפיזם אפס הוא סוג מיוחד של מורפיזם "טריוויאלי".
הגדרה
תהי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle C} קטגוריה. אומרים כי מכילה את מורפיזם אפס, אם לכל זוג אובייקטים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X,Y} יש מורפיזם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0_{X,Y}:X\rightarrow Y} כך שמתקיימת התכונה הבאה:
לכל זוג מורפיזמים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f:R\rightarrow S} ו-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle g:U\rightarrow V} מתקבלת דיאגרמה קומוטטיבית:
אם נציב בדיאגרמה הקומוטטיבית לעיל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle R=S,f=id_R} או לחלופין הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle U=V,g=id_U} , נקבל כי ההרכבה של מורפיזם אפס עם מורפיזם כלשהו (מימין או משמאל) נותנת מורפיזם אפס.
יתרה מכך, אם קיימת לקטגוריה משפחת מורפיזמי אפס, אז משפחה זו היא יחידה.
אם לקטגוריה קיימים מורפיזמי אפס אז ניתן להגדיר בה גרעין ו-קו-גרעין.
מורפיזם הוא מורפיזם אפס אם ורק אם הוא קבוע וקו-קבוע.
דוגמאות
- בקטגוריה של חבורות, מורפיזם אפס הוא הומומורפיזם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle f:G\rightarrow H} אשר מעתיק כל איבר ב-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle G} לאיבר היחידה של .
- באופן יותר כללי, אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle C} היא קטגוריה המכילה אובייקט אפס הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0} , אז לכל זוג אובייקטים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X,Y} קיים מורפיזם יחיד הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0_{X,Y}:X\rightarrow 0 \rightarrow Y} (ההרכבה של המורפיזם היחיד מ-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0 \to Y} עם המורפיזם היחיד הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X \to 0} ).
- הקטגוריה של הקבוצות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{Set}} לא מכילה מורפיזמי אפס. כך גם הקטגוריה של מרחבים טופולוגים.
מורפיזם אפס28255117