חוק האפס-אחד של קולמוגורוב

מתוך המכלול, האנציקלופדיה היהודית
(הופנה מהדף מאורע זנב)
קפיצה לניווט קפיצה לחיפוש

בערך זה
נעשה שימוש
בסימנים מוסכמים
מתחום המתמטיקה.
להבהרת הסימנים
ראו סימון מתמטי.

חוק האפס-אחד של קולמוגורוב הוא משפט יסודי בתורת ההסתברות שהוכיח המתמטיקאי אנדריי קולמוגורוב.[1] המשפט מתאר מאורעות המכונים "מאורעות זנב", שהסתברותם יכולה להיות 0 או 1 בלבד.

באופן לא לגמרי פורמלי, "מאורע זנב" הוא מאורע שניתן לתיאור על ידי אוסף בן-מניה של משתנים מקריים בלתי-תלויים, מבלי שהוא תלוי באף קבוצה סופית של משתנים מקריים מתוך האוסף. כל מאורע כזה, קובע חוק האפס-אחד, הוא בהכרח קורה או בהכרח לא קורה בהסתברות 1.

מאורעות זנב מתוארים בדרך-כלל כמאורעות גבוליים. כך למשל, באופן לחלוטין לא פורמלי, מאורע מהסוג של "הסכום האינסופי של סדרת משתנים מקריים מסוימת - מתכנס למספר סופי" הוא מאורע שאינו תלוי כמובן באף קבוצה סופית מתוך סדרת המשתנים המקריים, ולכן הוא מאורע זנב. דוגמה פורמלית למאורע זנב כזה מובאת בהמשך.

ניסוח המשפט

נוסח ראשון: יהי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (X,\mathcal{F}, \mathbb{P})} מרחב הסתברות, ותהי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\{X_i\right\}_{i=1}^{\infty}} קבוצה בת-מניה של משתנים מקריים בלתי-תלויים.[2]

נגדיר "מאורע זנב" הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A \in \mathcal{F}} להיות מאורע שהסתברותו אינה תלויה באף קבוצה סופית מתוך הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\{X_i\right\}_{i=1}^{\infty}} .[3]

חוק האפס-אחד של קולמוגורוב קובע כי כל מאורעות הזנב הם בעלי הסתברות טריוויאלית "אפס-אחד". כלומר, לכל מאורע זנב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} , מתקיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{P}\left(A\right) = 0} או הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{P}\left(A\right) = 1} .

נוסח שני: יהי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (X,\mathcal{F}, \mathbb{P})} מרחב הסתברות, ותהי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\{F_i\right\}_{i=1}^{\infty}} קבוצה בת-מניה של סיגמא אלגבראות שהן כולן מוכלות ב-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{F}} ובלתי-תלויות.[4]

עבור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n=0,1,2,...} , נגדיר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{T}_n = \sigma\left(\bigcup_{i=n}^{\infty}F_i\right)} , ונתבונן בסיגמא-אלגברת הזנב, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{T} = \bigcap_{n=1}^{\infty}\mathcal{T}_n} .[5] מאורעות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{T}} מכונים "מאורעות זנב".

חוק האפס-אחד של קולמוגורוב קובע כי כל מאורעות הזנב הם בעלי הסתברות טריוויאלית "אפס-אחד". כלומר, לכל מאורע הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A \in \mathcal{T}} מתקיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{P}\left(A\right) = 0} או הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{P}\left(A\right) = 1} .

הנוסח הראשון אינטואיטיבי יותר, והוא מתקבל כמקרה פרטי של הנוסח השני, על ידי לקיחת הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_{i} = \sigma \left(X_{i}\right)} , כלומר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_i} היא הסיגמא-אלגברה המינימלית שביחס אליה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X_i} מדיד.

הוכחה

המשפט נובע באופן מיידי מחוק האפס-אחד של לוי. עם זאת נציג כאן הוכחה ישירה שלו.

למה: תהי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{A}} אלגברה של קבוצות על הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X} . תהי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{F} = \sigma\left(\mathcal{A}\right)} .

אזי לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A \in \mathcal{F}} , לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon > 0} קיימת הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle B \in \mathcal{A}} , כך שמתקיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{P}\left(A\triangle B\right) < \epsilon} .

הוכחה בקצרה: ניתן להראות שמשפחת כל הקבוצות המקיימות את התכונה שבלמה מהווה סיגמא-אלגברה, ומשפחה זו בבירור מכילה את הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{A}} , ולכן היא מכילה את הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{F}} .

נפנה כעת להוכחת חוק האפס-אחד.

עבור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n = 1,2,3,...} נגדיר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{G}_n = \sigma\left(F_1,...,F_{n-1}\right)} , ונגדיר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{G} = \bigcup_{n=1}^{\infty}\mathcal{G}_n} . נשים לב כי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{G}} היא איחוד של סדרה עולה של אלגבראות, ולכן היא אלגברה. כמו כן ניתן לראות כי מתקיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{T}_1 = \sigma\left(\mathcal{G}\right)} .

בהינתן מאורע הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A \in \mathcal{T}} , מהלמה נובע כי לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon > 0} יש מאורע הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle B \in \mathcal{G}} שעבורו מתקיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{P}\left(A \triangle B\right) < \epsilon} , כלומר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{P}\left(A\right) - \epsilon < \mathbb{P}\left(B\right) < \mathbb{P}\left(A\right) + \epsilon} .

יהי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} שעבורו הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle B \in \mathcal{G}_N} . נשים לב כי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A \in \mathcal{T} \subset \mathcal{T}_{N+1}} , ולכן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A,B} בלתי-תלויות, ונקבל בסיכום כי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{P}\left(A\right) - \epsilon < \mathbb{P}\left(A\cap B\right) = \mathbb{P}\left(A\right)\cdot\mathbb{P}\left(B\right) < \mathbb{P}\left(A\right)\cdot\left(\mathbb{P}\left(A\right) + \epsilon\right)} .

אבל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \epsilon} שרירותי, ולכן נובע כי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{P}\left(A\right) = \mathbb{P}\left(A\right)^2} , כלומר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{P}\left(A\right) = 0} או הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{P}\left(A\right) = 1} .

דוגמאות

נתבונן במרחב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X = \left\{0,1\right\}^{\mathbb{N}}} , עם הסיגמא-אלגברה הנוצרת על ידי הצילינדרים, כלומר על ידי קבוצות מהצורה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle C\left(a,n\right) = \left\{ \mathbf{x} \in X \mid x_n = a\right\}} (כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_n} הוא הקואורדינטה ה-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{x}} ), עבור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a \in \left\{0,1\right\}} כלשהו.

נגדיר מידה על מרחב זה באמצעות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{P}\left(C\left(a,n\right)\right) = \frac{1}{2}} לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} ולכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} . ממשפט ההרחבה של קרתאודורי נובע כי הגדרת המידה על הקבוצות היוצרות מתרחבת להגדרתה על כל הסיגמא-אלגברה הנוצרת על ידיהן.

עבור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=1,2,3,...} נגדיר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_i = \sigma\left(C\left(0,i\right)\right)} , ובהתאם נגדיר משתנים-מקריים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X_{i}\left(\mathbf{x}\right) = \frac{x_i}{i}} .

אזי ניתן להראות כי המאורעות הבאים הם מאורעות זנב:

  • הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\{\mathbf{x} \in X \mid \sum_{i=1}^{\infty}X_{i}\left(\mathbf{x}\right) < \infty \right\}}
  • הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\{\mathbf{x} \in X \mid \lim_{i \to \infty}X_{i}\left(\mathbf{x}\right) \mbox{exists} \right\}}
  • הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\{\mathbf{x} \in X \mid \limsup_{i \to \infty}X_{i}\left(\mathbf{x}\right) < c \right\}} לאיזשהו הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle c \in \mathbb{R}}

היארעות-תדירה והקשר ללמה השנייה של בורל-קנטלי

באופן כללי יותר, אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\{A_i\right\}_{i=1}^{\infty}} אוסף של מאורעות כלשהם, אז המאורע הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\{\text{infinitely many of the } A_i \text{ occur} \right\} = \limsup_{i}\left(A_i\right) = \bigcap_{n=1}^{\infty}\bigcup_{i=n}^{\infty}A_i} הוא מאורע זנב שלהם. לכן אם המאורעות בלתי-תלויים, אז ההסתברות למאורע זה היא 0 או 1.

הלמה השנייה של בורל-קנטלי קובעת כי במקרה שבו המאורעות בלתי-תלויים וגם הטור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{i=1}^{\infty}\mathbb{P}\left(A_i\right)} מתבדר לאינסוף, אז ההסתברות מתבררת להיות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{P}\left(\limsup_{i\to\infty}A_i\right) = 0} .

לקריאה נוספת

הערות שוליים

  1. המשפט פורסם בספרו של קולמגורוב, המופיע בפרק "לקריאה נוספת".
  2. כלומר, לכל קבוצת אינדקסים סופית הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle i_1,...,i_k} , לכל קבוצת מאורעות , מתקיים כי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{P}\left(X_{i_{1}} \in A_{i_{1}},...,X_{i_{k}} \in A_{i_{k}}\right) = \mathbb{P}\left(X_{i_{1}} \in A_{i_{1}}\right)\cdot...\cdot\mathbb{P}\left(X_{i_{k}} \in A_{i_{k}}\right)} .
  3. כלומר, לכל קבוצת אינדקסים סופית הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle i_1,...,i_k} , עבור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X_{i_{1}},...,X_{i_{k}}} , מתקיים כי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{P}\left(A \mid X_{i_{1}},...,X_{i_{k}} \right) = \mathbb{P}\left(A\right)} .
  4. כלומר, לכל קבוצת אינדקסים סופית הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle i_1,...,i_k} , לכל קבוצת מאורעות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_{i_{1}} \in F_{i_{1}},...,A_{i_{k}} \in F_{i_{k}}} , מתקיים כי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{P}\left(A_{i_{1}}\cap...\cap A_{i_{k}}\right) = \mathbb{P}\left(A_{i_{1}}\right)\cdot...\cdot\mathbb{P}\left(A_{i_{k}}\right)} .
  5. חיתוך של סיגמא-אלגבראות הוא סיגמא-אלגברה.
הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0


שגיאות פרמטריות בתבנית:מיון ויקיפדיה

שימוש בפרמטרים מיושנים [ דרגה ]
חוק האפס-אחד של קולמוגורוב19490334