טבעת (גאומטריה)

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש
המונח "חישוק" מפנה לכאן. אם הכוונה למשמעות אחרת, ראו חישוק (פירושונים).

בגאומטריה, טבעת היא הצורה המישורית שמהווה השטח שבין שני מעגלים קונצנטריים, או הצורה המתקבלת כשמחסרים שטח עיגול קטן מעיגול גדול בעל אותה נקודת מרכז.

שטח הטבעת

לפי הפרש השטחים

אם לעיגול הגדול רדיוס R ולקטן רדיוס r, אז שטח הטבעת הוא הפרש השטחים .

לפי משפט פיתגורס

אם נסמן באות d את מחצית אורכו של הקטע הארוך ביותר שניתן לשרטט כך שכולו יימצא בגבולות הטבעת, נקבל ששטח הטבעת שווה .

ניתן להוכיח זאת באמצעות משפט פיתגורס, משום שהקטע הארוך ביותר משיק למעגל הפנימי של הטבעת. חצי מהקטע הארוך ביותר יוצר משולש ישר-זווית עם רדיוס המעגל הפנימי r כניצב ורדיוס המעגל החיצוני R.

לפי חשבון אינפיניטסימלי

ניתן לחשב את שטח הטבעת גם באמצעות שימוש בחשבון האינפיניטסימלי. נוכל להגיע לביטוי על ידי הכפלת מכפלת הפרשי הרדיוסים בריבוע עם או על ידי הצבה באינטגרל המסוים .

ערך זה הוא קצרמר בנושא מתמטיקה. אתם מוזמנים לתרום למכלול ולהרחיב אותו.

קישורים חיצוניים

ויקישיתוף מדיה וקבצים בנושא טבעת בוויקישיתוף
  • טבעת, באתר MathWorld (באנגלית)
הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0

טבעת (גאומטריה)29443638Q45926