חסם צ'פמן-רובינס
בתורת האמידה ובסטטיסטיקה, חסם צ'פמן-רובינס (Chapman-Robbins Bound; לעיתים חסם המרסלי-צ'פמן-רובינס) הוא חסם תחתון על השונות של אומדים של פרמטרים דטרמיניסטיים. חסם זה הינו הכללה של חסם קרמר-ראו, ובהשוואה אליו - הוא הדוק יותר ומתאים למגוון רחב יותר של בעיות. עם זאת, חישובו לרוב מסובך יותר.
החסם נגזר לראשונה ובאופן בלתי-תלוי על ידי ג'ון המרסלי ב-1950 ועל ידי דאגלס צ'פמן והרברט רובינס ב-1951. זהו מקרה פרטי של חסם ברנקין (Barankin) המורכב יותר.
החסם
יהי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \theta} פרמטר דטרמיניסטי לא-ידוע, ויהיה אומד של פונקציה כלשהי של הפרמטר, . יהי . הפילוג של (שתלוי ב-), ונניח כי הוא מוגדר היטב וחיובי לכל ולכל .
אם הוא אומד חסר-הטיה של , כלומר:
אז לפי חסם צ'פמן-רובינס:
- .
למעשה, אי השוויון (ללא הוצאת הסופרמום) מתקיים לכל , ולכן החסם ההדוק ביותר הוא כאשר הביטוי מקבל את הסופרמום שלו לפי . התנאי לקיומו של החסם הוא שהתומך של יהיה מוכל בתומך של .
הקשר לחסם קרמר-ראו
חסם צ'פמן-רובינס (הביטוי ללא הסופרמום) מתכנס לחסם קרמר-ראו כאשר , בהנחה שהתנאים הרגולריים הדרושים מתקיימים (ראו בערך). מתוך כך, חסם צ'פמן-רובינס הוא תמיד הדוק לכל הפחות כמו קרמר-ראו. יתר על-כן, חסם צ'פמן-רובינס קיים תחת תנאים רגולריים חלשים משמעותית מאלו של חסם קרמר-ראו. כך למשל, להוכחת החסם לא נדרש כי הפילוג יהיה גזיר. במקרים כאלו, האינפורמציה של פישר לא מוגדרת, ולכן חסם קרמר-ראו לא קיים.
הוכחת החסם
הוא משערך חסר-הטיה, ולכן מתקיים:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \int T(x)\cdot p(x;\theta) \, dx = \psi(\theta)}
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \int T(x)\cdot p(x;\theta+h) \, dx = \psi(\theta+h)}
חיסור המשוואות:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \int T(x) \cdot (p(x;\theta+h)-p(x;\theta)) \, dx=\psi(\theta+h)-\psi(\theta)}
בנוסף מתקיים:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \int \psi(\theta) \cdot (p(x;\theta+h)-p(x;\theta)) \, dx=\psi(\theta) \cdot \int (p(x;\theta+h)-p(x;\theta)) \, dx=\psi(\theta) \cdot (1-1)=0}
נחסיר בין שתי המשוואות האחרונות, לקבלת:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \int (T(x)-\psi(\theta)) \cdot \frac{p(x;\theta+h)-p(x;\theta)}{p(x;\theta)} \cdot p(x;\theta) \, dx=\psi(\theta+h)-\psi(\theta)}
כלומר:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ \mathrm{E} \left[(T(X)-\psi(\theta)) \cdot (\frac{p(x;\theta+h)}{p(x;\theta)}-1) \right]=\psi(\theta+h)-\psi(\theta)}
העלאת המשוואה בריבוע ואי-שוויון קושי-שוורץ יניבו:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ (\psi(\theta+h)-\psi(\theta))^2 = \mathrm{E} \left[(T(X)-\psi(\theta)) \cdot (\frac{p(x;\theta+h)}{p(x;\theta)}-1) \right] ^2 \le \mathrm{E} \left[(T(X)-\psi(\theta))^2 \right] \cdot \mathrm{E} \left[(\frac{p(x;\theta+h)}{p(x;\theta)}-1)^2\right]}
ומכאן:
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ Var(T(X)) \ge \frac{\left[\psi(\theta+h)-\psi(\theta)\right]^2}{(\tfrac{p(x;\theta+h)}{p(x;\theta)} - 1)^2}}
שזהו החסם המבוקש.
ראו גם
לקריאה נוספת
- Hammersley, J. M. (1950), "On estimating restricted parameters", Journal of the Royal Statistical Society, Series B 12 (2): 192–240.
- Chapman, D. G.; Robbins, H. (1951), "Minimum variance estimation without regularity assumptions", Annals of Mathematical Statistics 22 (4): 581–586.
- Lehmann, E. L.; Casella, G. (1998), Theory of Point Estimation (2nd ed.), Springer.
חסם_צ'פמן-רובינס13804602Q5073346