חוג קוהרנטי
קפיצה לניווט
קפיצה לחיפוש
בתורת החוגים, חוג קוהרנטי (משמאל) הוא חוג שלכל אידיאל שמאלי נוצר סופית שלו יש ייצוג סופי.
לחוגים קוהרנטיים יש אפיון הומולוגי: חוג הוא קוהרנטי אם ורק אם כל מכפלה ישרה של מודולים שטוחים היא שטוחה. כל חוג קומוטטיבי נתרי הוא קוהרנטי, אבל יש גם דוגמאות נוספות, כגון חוג הפולינומים באינסוף משתנים $ k[x_{1},x_{2},\dots ] $ מעל שדה $ k $.
חוג קומוטטיבי הוא קוהרנטי אם ורק אם החיתוך של כל שני אידיאלים נוצרים סופית הוא נוצר סופית ובנוסף המאפס של כל איבר הוא נוצר סופית. בחוג קומוטטיבי קוהרנטי, כל המנות $ (a:b)=\{x\in R\mid xb\in Ra\} $ נוצרות סופית (תכונה זו נכונה גם בתחומי gcd). כל חוג תורשתי למחצה קומוטטיבי הוא קוהרנטי; למעשה החוגים התורשתיים למחצה הקומוטטיביים הם בדיוק החוגים הקוהרנטיים הקומוטטיביים, בעלי ממד גלובלי חלש = 1.
חוג קוהרנטי28293340