וקטור נורמלי

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש
מצולע עם שני וקטורי הנורמל שלו

וקטור נורמלי (Normal), המוכר גם בגאומטריה כנורמל, הוא וקטור (או ישר) המאונך לאובייקט המתאים; ישר, מישור או משטח כללי.

מציאת וקטור הנורמל

  • מציאת וקטור הנורמל במישור: - כאן וקטור הנורמל הוא: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (A,B)} . כלומר, ווקטור הנורמל הוא המקדמים של x ו-y.
  • מציאת וקטור הנורמל במרחב: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle Ax+By+Cz+D=0} - כאן וקטור הנורמל הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (A,B,C)} .
  • אם הישר או המישור נתונים בהצגה פרמטרית, ניתן למצוא את הווקטור על ידי המשוואות שמראות שהמכפלה הסקלרית של הווקטור הנורמלי בוקטורי הכיוון של הישר או המישור שווה לאפס.
  • בהינתן הצגה פרמטרית של משטח כלשהו(לא בהכרח מישור), הווקטור הנורמלי של המשטח יהיה מכפלה וקטורית בין וקטורי הנגזרות החלקיות של הפרמטרים המגדירים של המשטח.

דוגמאות

  • מציאת וקטור נורמלי למשטח הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle z=4-x^2-y^2} בנקודה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x,y,z)} . הצגתו הפרמטרית של המשטח היא : הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle S = (x,y,4-x^2-y^2)} , מכיוון שהמשטח דו־ממדי הוא מתואר באמצעות שני פרמטרים בלבד, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} ו הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} . הנגזרת החלקית של S לפי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} היא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\partial S \over\partial x} = (1,0,-2x)} והנגזרת החלקית של S לפי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} היא . הווקטור הנורמלי למשטח מתקבל על ידי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\partial S \over\partial x} \times {\partial S \over\partial y} = \begin{vmatrix} i & j &k \\ 1 & 0 & -2x \\ 0 & 1 & -2y\end{vmatrix} = (2x,2y,1)} . כלומר לכל נקודה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x,y,z)} , הווקטור הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{n}= (2x,2y,1)} ניצב למשטח הפונקציה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle z=4-x^2-y^2} . ווקטור היחידה המנורמל הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \widehat{n}= {\vec{n}\over\lVert \vec{n} \rVert} = {(2x,2y,1)\over \sqrt{4x^2+4y^2+1} }} .

שימושים

לווקטור הנורמל מספר שימושים:

  • וקטורים מאונכים אם ורק אם המכפלה הסקלרית של הנורמלים שלהם שווה לאפס.
  • מגדירים אלמנט שטח אינפיניטסימלי בנקודה P על ידי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{dA} = (dA)\vec{n}} כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{n}} הוא וקטור נורמל באורך יחידה הניצב למשטח האינפיניטסימלי בנקודה P.

ראו גם


ערך זה הוא קצרמר בנושא מתמטיקה. אתם מוזמנים לתרום למכלול ולהרחיב אותו.
הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0

וקטור נורמלי39494214Q273176