השערת צ'רני

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

בתורת האוטומטים הסופיים, השערת צ'רניאנגלית: Černý conjecture; על שם יאן צ'רני) היא השערה על האורך המקסימלי של מילה מסנכרנת, באוטומט שיש בו מילה כזו. ההשערה קובעת שאם X היא משפחה של פונקציות מקבוצה בת n נקודות לעצמה, ואפשר ליצור מ-X באמצעות הרכבה פונקציה קבועה, אז יש הרכבה כזו באורך שאינו עולה על [1].

את החסם שההשערה מציעה אי-אפשר לשפר. לדוגמה, מן התמורה והפונקציה b המעבירה כל נקודה לעצמה, פרט לכך ש- , אפשר להגיע לערך קבוע באמצעות הסדרה , ולא בשום דרך קצרה יותר.

ידוע שההשערה נכונה אם הקבוצה X כוללת מחזור באורך n. החסם העליון הטוב ביותר הידוע כיום הוא .

ראו גם

הערות שוליים

  1. ^ J. Černý, Poznámka k homogénnym eksperimentom s konecnými automatami, Mat.-Fyz. Cas. Slovensk. Akad. Vied., Vol. 14, 208--216, (1964). (בסלובקית)
הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0

השערת צ'רני35456670Q7662204