תת-סדרה

מתוך המכלול, האנציקלופדיה היהודית
(הופנה מהדף גבול חלקי)
קפיצה לניווט קפיצה לחיפוש

בערך זה
נעשה שימוש
בסימנים מוסכמים
מתחום המתמטיקה.
להבהרת הסימנים
ראו סימון מתמטי.

באנליזה מתמטית, תת־סדרה היא קבוצה חלקית מתוך הסדרה המקורית, המסודרת באותו הסדר. באופן לא פורמלי, תת־סדרה מתקבלת מהסדרה המקורית על ידי הסרת חלק מהאברים.

למשל: לסדרה יש תתי־סדרות הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_n=a_{2n}=\frac{1}{2n},c_n=a_{2n^2+7}=\frac{1}{2n^2+7}} .

סדרה נחשבת לתת־סדרה של עצמה. תת־סדרה של תת־סדרה היא בעצמה תת־סדרה גם של הסדרה המקורית.

ניסוח פורמלי

תהי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{a_n\}_{n=1}^\infty} סדרה כלשהי, ותהי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{n_k\}_{k=1}^\infty} סדרה עולה ממש של מספרים טבעיים. אז הסדרה נקראת תת־סדרה של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{a_n\}_{n=1}^\infty} .

גבול של תת־סדרה

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle L} נקרא גבול חלקי של הסדרה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{a_n\}_{n=1}^\infty} אם קיימת תת־סדרה של המתכנסת ל־הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle L} . הגבולות החלקיים של סדרה נקראים נקודות הצטברות שלה. קבוצת נקודות ההצטברות היא קבוצה סגורה.

סדרה מתכנסת (במובן הרחב) אם ורק אם כל הגבולות החלקיים שלה שווים. כך למשל הסדרה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_n=3+\frac{1}{\sqrt n}} מתכנסת ל־3, ולכן כל תת־סדרה שלה, למשל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_n=a_{n^2}=3+\frac1n} , מתכנסת לאותו מספר. הסדרה מתבדרת, אולם תת־הסדרה שלה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle d_n=c_{2n}=5+\frac1n} , מתכנסת ל־5. לכן, אם ידוע שסדרה מתכנסת, אז אפשר לחשב את הגבול שלה דרך חישוב הגבול של תת־סדרה.

לכל סדרה יש לפחות גבול חלקי אחד, סופי או אינסופי. הסיבה לכך היא שאם הסדרה חסומה אז יש לה תת-סדרה מתכנסת לפי משפט בולצאנו-ויירשטראס, ואם היא אינה חסומה, אז קל לבנות מאבריה תת-סדרה שמתכנסת לגבול אינסופי.

גבול עליון וגבול תחתון

נעסוק בהגדרה של גבול עליון, וגבול תחתון מוגדר ומסומן באופן דומה.

גבול עליון של סדרה של מספרים ממשיים מוגדר כגבול החלקי הגדול ביותר שלה. הגבול העליון תמיד קיים (סופי במקרה של סדרה חסומה או אינסופי אחרת). גבול עליון זהה לגבול של סדרת החסמים העליונים של זנבות הסדרה.

באופן פורמלי: תהי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_n} סדרה. נגדיר סדרה חדשה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_m} באופן הבא:

וכן הלאה.

אם הסדרה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_m} מתכנסת ל־הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle L} , אז הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle L} הוא גבול עליון של .

נהוג לסמן גבול עליון הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \limsup_{n\to\infty}a_n} או הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{\lim_{n\to\infty}}a_n} .

ראו גם