מערכת פרויקטיבית
בערך זה |
מערכת פרויקטיבית בקטגוריה מסוימת היא אוסף עצמים באותה קטגוריה (קבוצות, חבורות או חוגים למשל) המקיימים ביניהם קשר של הטלות (אפשר להטיל איבר במקום גבוה יותר ולקבל איבר במקום נמוך יותר) ותכונות מסוימות. לקבוצת כל ה"סדרות" של איברים מאוסף העצמים, המקיימים את תכונת ההטלה, קוראים "הגבול ההפוך" של המערכת הפרויקטיבית. למערכות פרויקטיביות (וגבולות הפוכים בפרט) יש שימוש בתורת המספרים, למשל: חוג המספרים ה-p-אדיים הוא גבול הפוך של חוגי שלמים מודולו .
הגדרה
קבוצה מכוונת (directed set) היא קבוצה שמוגדר עליה סדר חלקי , ומקיימת: לכל שני אינדקסים i ו-j קיים אינדקס שלישי k כך ש-.
מערכת פרויקטיבית של קבוצות, חבורות או חוגים (נקרא להם עצמים) היא אוסף של עצמים בקטגוריה המתאימה בעלת קבוצת אינדקסים שהיא קבוצה מכוונת, ביחד עם פונקציות הטלה הפענוח נכשל (שגיאת המרה. השרת ("https://wikimedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle \pi _{ij}:X_{j}\to X_{i}} המהוות מורפיזמים בקטגוריה המתאימה, שמקיימות את התכונות הבאות:
- זהות עצמית: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi_{ii} = \mathrm{id}_{X_i}} , הטלה של עצם על עצמו היא הזהות.
- הרכבה טרנזיטיבית: לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle i,j,k \in I} שמקיימים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle i \le j \le k} מתקיים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi_{ij} \circ \pi_{jk} = \pi_{ik}} , כלומר: להטיל את הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X_k} על הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X_i} שקול להטלת הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X_k} על ומשם להטיל על הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X_i} באמצעות ההטלה מ-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X_j} ל-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X_i} .
הגבול ההפוך (inverse limit) הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{\longleftarrow}X_i} של מערכת פרויקטיבית בקטגוריה מסוימת היא עצם באותה קטגוריה הכולל את כל ה"סדרות" שבהן ההטלות מקיימות את התכונה הבאה: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi_{ij}(x_j) = x_i} לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle i \le j} . בנוסחה
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{\longleftarrow}X_i = \left\{ (x_i)_{i \in I} \in \prod_{i \in I}X_i \ | \ \forall i \le j : \pi_{ij}(x_j) = x_i \right\}} .
אם הקבוצה המכוונת היא את איברי הגבול ההפוך אפשר לרשום בצורה
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x = (x_n)_{n \in \mathbb{N}} = (x_n)_{n=1}^{\infty} = ( ..., x_n, ..., x_2, x_1 )} .
דוגמאות
- חוג המספרים ה-p-אדיים הוא גבול הפוך שלהפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left( \mathbb{Z}/p^n \mathbb{Z} \right)_{n=1}^{\infty}}
(חוגי השלמים מודולו הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle p^n}
), כלומר: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{Z}_p = \lim_{\longleftarrow}(\mathbb{Z}/p^n \mathbb{Z})}
.
- כאן ההטלות הן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi_{nm} : \mathbb{Z}/p^m\mathbb{Z} \to \mathbb{Z}/p^n\mathbb{Z}} המוגדרות על ידי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_n = \pi_{nm}(x_m) = x_m \bmod p^n} (במילים אחרות: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x + p^m \mathbb{Z} \mapsto x + p^n \mathbb{Z}} ) לכל .
- חבורה פרו-סופית היא חבורה שמתקבלת על ידי גבול הפוך של חבורות סופיות.
- ההשלמה הפרו-פיניטית של חוג השלמים: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{\mathbb{Z}} = \lim_{\leftarrow}\mathbb{Z}/n\mathbb{Z}} . ממשפט השאריות הסיני נובע ש-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{\mathbb{Z}} \cong \prod_p \mathbb{Z}_p} .
- חבורה פרו-p היא חבורה שמתקבלת על ידי גבול הפוך של חבורות p.
מקורות
- Gregory Berhuy, Introduction to Galois Cohomology and its Applications, The London Mathematical Society.
ראו גם
31254020מערכת פרויקטיבית