כאשר הוא אורך הקשת של . בפרט, ניתן לקחת את המקסימום כחסם עליון.
טענת הלמה אינה מפתיעה. אם מקרבים את המסילה כאיחוד סופי של קטעים קטנים, אז המקסימום של הערכים בקטעים אלה אינו רחוק מהחסם על המסילה. לפיכך, אם מבצעים אינטגרל של המקסימום על פני כל המסילה, אז האינטגרל של על המסילה חייב להיות קטן ממנו או שווה לו.
באופן פורמלי ניתן להראות שאי-השוויון מתקיים באמצעות הגדרת האינטגרל הקווי, אי-שוויון המשולש האינטגרלי והנוסחה עבור אורך עקומה כדלקמן:
דוגמה
בעיה – חשבו את האינטגרל .
פתרון – במקום לחשב את האינטגרל בגבולות המבוקשים, נקרב את ונשאיף את לאינסוף. לשם כך נשלים את קטע האינטגרציה למסילה סגורה, על ידי הוספת חצי המעגל מ- לכיוון (נגד כיוון השעון). את חצי המעגל הזה נסמן ב-.
לפי משפט השארית, האינטגרל הזה שווה ל- כפול סכום השאריות בכל נקודות הסינגולריוּת. הסינגולריות היחידה של הפונקציה בתוך המסילה היא בנקודה . אפשר לפתח לטור לורן; ומכאן שהשארית, שהיא המקדם של
, שווה ל-. מכאן נובע שהאינטגרל על פני כל המסילה הוא .
אורכו של מסלול האינטגרציה הוא חצי היקף מעגל שרדיוסו , ומכאן .
מאי-שוויון המשולש ניתן לראות כי:
Saff, E.B; Snider, A.D. (1993), Fundamentals of Complex Analysis for Mathematics, Science, and Engineering (2nd ed.), Prentice Hall, ISBN978-0133274615.