אי-תלות אלגברית
במתמטיקה, ובמיוחד באלגברה קומוטטיבית, תת קבוצה S של אלגברה A נקראת בלתי תלויה אלגברית מעל שדה הבסיס K, אם לא קיים פולינום לא טריוויאלי עם מקדמים מ-K שמאפס תת-קבוצה סופית של איברי S. במילים אחרות, S היא בלתי תלויה אלגברית אם לכל ב-S ולכל פולינום שאינו פולינום האפס, . בפרט, קבוצה בת איבר אחד היא בלתי תלויה אלגברית מעל K אם ורק אם הוא טרנסצנדנטי מעל K. באופן כללי יותר, כל איבריה של קבוצה בלתי תלויה אלגברית הם איברים טרנסצנדנטיים מעל K, אך זהו בוודאי לא תנאי מספיק לכך. לדוגמה, תת-הקבוצה של שדה המספרים הממשיים היא לא בלתי תלויה אלגברית מעל שדה המספרים הרציונליים, מכיוון שעבור הפולינום עם המקדמים הרציונלים
מתקיים
- .
המספר הגדול ביותר של איברים בלתי תלויים אלגברית נקרא דרגת הטרנסצנדנטיות של A מעל K.
השאלה האם הקבוצה היא תלויה אלגברית מעל המספרים הרציונליים היא בעיה פתוחה במתמטיקה. ב-1996 הוכיח יורי נסטרנקו כי הקבוצה היא בלתי תלויה אלגברית מעל .
משפט לינדמן-ויירשטראס
- ערך מורחב – משפט לינדמן-ויירשטראס
לעיתים קרובות ניתן להשתמש במשפט לינדמן-ויירשטראס על מנת להוכיח כי קבוצה מסוימת היא בלתי תלויה אלגברית מעל שדה הרציונלים. המשפט נקרא על שמם של פרדיננד לינדמן וקארל ויירשטראס. לינדמן הוכיח ב-1882 כי הוא מספר טרנסצנדנטי לכל אלגברי שונה מ-0. ויירשטראס הוכיח ב-1885 את הגרסה הכללית יותר של המשפט הטוענת כי אם הם מספרים אלגברים בלתי תלויים ליניארית מעל אז המספרים הם בלתי תלויים אלגברית מעל .
ראו גם
קישורים חיצוניים
- אי-תלות אלגברית, באתר MathWorld (באנגלית)
אי-תלות אלגברית34092618Q1495342