שער אדמר

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

בתורת האינפורמציה הקוונטית שער הדמר הוא שער קוונטי המממש טרנספורמציה על קיוביט יחיד, הקרויה על שם המתמטיקאי הצרפתי-יהודי ז'אק הדמר.

הגדרה

הטרנספורמציה ניתנת לרישום בתור המטריצה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle H = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}} .

דוגמאות

הפעלת שער הדמר על אוגר קוונטי של קיוביט בודד במצב יגרום לשינוי מצב האוגר ל

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle H|x\rangle= \frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}{\alpha \choose \beta}=\frac{1}{\sqrt{2}}\left[\left(\alpha+\beta\right)|0\rangle + \left(\alpha-\beta\right)|1\rangle\right]} .

לפיכך

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle H|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)}
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle H|1\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)}

הרחבה ל n קיוביטים

הפעלת השער על אוגר בעל n קיוביטים, שקולה להפעלת H על כל אחד מהקיוביטים בנפרד. נסמן ב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle H^{\otimes n}} את השער עבור n קיוביטים.

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle H^{\otimes n}\equiv H\otimes H\otimes\ldots\otimes H } .

הפעלת השער על אוגר קוונטי במצב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle |x\rangle} כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\in\{0,1\}^n} משנה את ערך האוגר לפי הנוסחא שלהלן

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle H^{\otimes n}|x\rangle=\frac{1}{\sqrt{2^n}}\left(\sum_{i=0}^{2^n-1}(-1)^{x\cdot i}|i\rangle\right) }

כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\cdot i} היא המכפלה הסקאלרית של ייצוג x ו i כמחרוזות בינאריות. במילים אחרות, אם נייצג את x כמחרוזת באורך n, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\equiv x_0,x_1,\ldots,x_{n-1}} וכנ"ל לגבי i, אזי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\cdot i= \oplus_{k=0}^{n-1}x_k\cdot i_k}

הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0


שגיאות פרמטריות בתבנית:מיון ויקיפדיה

שימוש בפרמטרים מיושנים [ דרגה ]
שער הדמר22095765