שער אדמר
בתורת האינפורמציה הקוונטית שער הדמר הוא שער קוונטי המממש טרנספורמציה על קיוביט יחיד, הקרויה על שם המתמטיקאי הצרפתי-יהודי ז'אק הדמר.
הגדרה
הטרנספורמציה ניתנת לרישום בתור המטריצה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle H = \frac{1}{\sqrt{2}}\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}} .
דוגמאות
הפעלת שער הדמר על אוגר קוונטי של קיוביט בודד במצב יגרום לשינוי מצב האוגר ל
לפיכך
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle H|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)}
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle H|1\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)}
הרחבה ל n קיוביטים
הפעלת השער על אוגר בעל n קיוביטים, שקולה להפעלת H על כל אחד מהקיוביטים בנפרד. נסמן ב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle H^{\otimes n}} את השער עבור n קיוביטים.
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle H^{\otimes n}\equiv H\otimes H\otimes\ldots\otimes H } .
הפעלת השער על אוגר קוונטי במצב הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle |x\rangle} כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\in\{0,1\}^n} משנה את ערך האוגר לפי הנוסחא שלהלן
- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle H^{\otimes n}|x\rangle=\frac{1}{\sqrt{2^n}}\left(\sum_{i=0}^{2^n-1}(-1)^{x\cdot i}|i\rangle\right) }
כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\cdot i} היא המכפלה הסקאלרית של ייצוג x ו i כמחרוזות בינאריות. במילים אחרות, אם נייצג את x כמחרוזת באורך n, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\equiv x_0,x_1,\ldots,x_{n-1}} וכנ"ל לגבי i, אזי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\cdot i= \oplus_{k=0}^{n-1}x_k\cdot i_k}
שגיאות פרמטריות בתבנית:מיון ויקיפדיה
שימוש בפרמטרים מיושנים [ דרגה ] שער הדמר22095765