ניתוב אנוכי
יש לערוך ערך זה. הסיבה היא: יש לחדד את ההבחנה בין P ל-p, להפוך ניסוח כשאלות לניסוח כהגדים מכלולזציה.
| ||
יש לערוך ערך זה. הסיבה היא: יש לחדד את ההבחנה בין P ל-p, להפוך ניסוח כשאלות לניסוח כהגדים מכלולזציה. | |
בחקר ביצועים, ניתוב אנוכי הוא אופן ניתוב שבו מזרימים כל יחידה בגרף בדרך היעילה ביותר עבורה, בלי להתחשב בהשלכות שיש לכך על יחידות זורמות אחרות. ניתוב אנוכי גורר רמת ביצועים ממוצעת קטנה או שווה לביצועים בניתוב מתוכנן.
אינטואיציה
בעת בחירת נתיב נסיעה אחד השיקולים המרכזיים הוא רמת העומס בנתיבים השונים. הנטייה הטבעית היא לבחור את הנתיב הפחות עמוס ללא התייחסות להשפעת הבחירה על העומס שיכול להיווצר. בחירה כזו נקראת אנוכית שכן כל אחד מהפרטים במערכת בוחר את הנתיב על פי רווח אישי וללא שיקולים מערכתיים. תכנון מערכתי של הנתיבים בהם כל אחד יסע הייתה מקטינה את זמן הנסיעה הכולל של הנוסעים.
באופן אינטואיטיבי הוספת נתיב נסיעה משפרת את הביצועים הממוצעים. פרדוקס ברס קובע כי כאשר התנועה של הפרטים במערכת נעשית בניתוב אנוכי, הוספת נתיב יכולה דווקא לפגוע ברמת הביצועים הממוצעת.
הגדרה פורמלית של המודל
יהי גרף מכוון עם זוגות מקור ויעד . נסמן ב את קבוצת המסלולים מ- ל-, וב-
את קבוצת כל המסלולים בגרף. תהי פונקציית הזרימה.
עבור f זרימה נתונה נסמן .
נסמן ב את כמות הזרימה במסלול מ- ל-.
זרימה f הינה פיזבילית אם לכל i מתקים
ולבסוף לכל נתונה פונקציית עלות ונניח שהיא איננה שלילית, דיפרנציאבילית ולא יורדת.
f מוגדרת כסכום העלויות של צלעות המסלול ונסמן
נגדיר עלות של זרימה f בגרף G כסך העלויות ב f כלומר:
על ידי סכימה על צלעות במסלול P נוכל גם לכתוב .
מחיר האנרכיה
נרצה לדבר על מחיר האנרכיה במשחק מסוג זה ולהבין מה החסמים על חוסר ההיתחשבות מסוג זה.
נבחן מקרה ספציפי בו כאשר יחידת התעבורה הינה אטומית כלומר לא ניתנת לחלוקה וננסה לחסות את מחיר האנרכיה עבור מקרה זה.
יהי s שיויי משקל נאש נתון ו מסלול של שחקן i בS נגדיר להיות פטרון אופטימלי
לשם כך נגדיר פונקציית מטרה במקרה זה טבעיה להגדיר את הפונקציה כסכום כלל העלוית ועל כן נרצה להביא למינימום את
בהסתמך על העובדה שs הוא שיויי משקל נאש ומניפולציה אלגברית מתקבל חסם והוא:
מה שמעניין כאן היא העובדה שהחסם כלל אינו תלויי במספר השחקנים ויתר אל כן הוא מספר קבועה.
על מנת להראות שהחסם הדוק מספיק להביא דוגה למשחק בו PoA הוא בדיוק כנ"ל.
ביבליוגרפיה
Algorithmic Game Theory, Edited by Noam Nisan, Tim Roughgarden, Eva Tardos, Vijay V. Vazirani, Cambridge University Press
Selfish Routing and the Price of Anarchy - Tim Roughgarden