מבחן דיריכלה
במתמטיקה, מבחן דיריכלה הוא שיטת בדיקה להתכנסות של טורים. הוא נקרא על שם יוהאן פטר גוסטב לז'ן דיריכלה שתיארו לראשונה, ופורסם לאחר מותו, בשנת 1862 כחלק ממאמר פרי עטו.
המבחן
המבחן קובע כי אם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{a_n\}} היא סדרה של מספרים ממשיים ו-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{b_n\}} היא סדרה של מספרים מרוכבים, והן מקיימות:
- לכל מספר טבעי N
כאשר M הוא קבוע מסוים, אז הטור:
מתכנס.
הוכחה
יהיו ו-.
מביצוע סכימה בחלקים, נקבל: .
כיוון ש- חסום על ידי M ו- , הראשון באיברים באגף ימין של הביטוי לעיל שווה לאפס, דהיינו כש- .
בנוסף, כיוון שהסדרה היא מונוטונית לא עולה, חיובי לכל k, לכן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle |B_k (a_k - a_{k+1})| \leq M(a_k - a_{k+1})} . כלומר, גודלו של הסכום החלקי של Bn כפול פקטור משתנה מסוים, קטן או שווה לחסם העליון של הסכום החלקי של Bn כפול אותו הגורם.
אולם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=0}^n M(a_k - a_{k+1}) = M\sum_{k=0}^n (a_k - a_{k+1})} , ולכן הטור הוא טור טלסקופי ששווה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle M(a_0 - a_{n+1})} , ולפיכך מתכנס ל- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle Ma_0} כש- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle n \rightarrow \infty} . לכן, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=0}^\infty M(a_k - a_{k+1})} מתכנס.
מכך נובע איפוא, ש- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=0}^\infty |B_k(a_k - a_{k+1})|} מתכנס גם כן כתוצאה ישירה של מבחן ההשוואה.
מ.ש.ל
יישומים
מקרה פרטי מיוחד מסוים של מבחן דיריכלה הוא מבחן לייבניץ המפורסם יותר, במקרה בו:
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_n = (-1)^n \Rightarrow\left|\sum_{n=1}^N b_n\right| \leq 1} .
תוצאה נוספת הנובעת ממבחן דיריכלה היא ש-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^\infty a_n \sin n } מתכנס כאשר היא סדרה יורדת השואפת לאפס (ההנחה שטור הסינוסים חסום הוא תוצאה ישירה של קיום חסם על הסכימה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^N e^{in} } כש-i היחידה המדומה).
קישורים חיצוניים
- מבחן דיריכלה, באתר אנציקלופדיה בריטניקה (באנגלית)
מבחן דיריכלה29614407Q1149255