משפט התלתן
משפט התלתן הוא משפט בגאומטריה אוקלידית.
ניסוח
עבור ABC משולש אקראי, יהי I מרכז המעגל החסום שלו ויהי S נקודת החיתוך של חוצה הזווית של A ושל המעגל החוסם. אזי, B,I,C כולן במרחק שווה מ-S. באופן שקול:
- יש מעגל שמרכזו S שעובר דרך B,I,C.
- המשולשים BIS, BCS, CIS כולם שווי שוקיים עם קודקוד ראש ב-S.
גרסה חזקה יותר של המשפט אומרת כי גם IA, מרכז המעגל החסום מבחוץ מהצד של A, נמצא על אותו מעגל.
הוכחות
הוכחה בחשבון זוויות
אפשר להתבונן במשולש הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle BIS} ולחשב את זוויותיו, שכן צריך להראות שהוא שווה-שוקיים. הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle I} הוא מפגש חוצי זוויות. נסמן את זוויות המשולש ב-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\alpha,2\beta,2\gamma} .
הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \angle IBC = \beta} מכך ש-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle BI} חוצה זווית, מאחר ש-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \angle SBC = \angle SAC = \alpha} , נקבל שהפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \angle SBI = \angle SBC + \angle CBI = \alpha + \beta} . בנוסף, הפענוח נכשל (שגיאת המרה. השרת ("https://wikimedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle \angle ISB=\angle ASB=\angle ACB=2\gamma } . מאחר שסכום הזוויות במשולש הוא 180, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \angle BIS =180 - \angle SBI - \angle ISB = (2\alpha + 2\beta + 2\gamma) - (\alpha + \beta) - 2\gamma = \alpha + \beta = \angle SBI} ולכן משולש הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle BIS} שווה-שוקיים. בצורה סימטרית, ניתן להוכיח ש-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle CIS} שווה-שוקיים ועל כן סיימנו.
הוכחה באמצעות משפט תאלס השני
הוכחה זו תוכיח גם את כך ש-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle I_A} , מרכז המעגל החסום מבחוץ, נמצא על המעגל. נקודה זו היא חיתוך חוצי הזוויות החיצוניים של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \angle B, \angle C} וחוצה הזווית הפנימי של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \angle A} .
נשים לב שמפני ש-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \angle BAS = \angle CAS} , נקבל כי הפענוח נכשל (שגיאת המרה. השרת ("https://wikimedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle BS=CS} . לכן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle S} היא חיתוך האנך האמצעי של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle BC} וחוצה הזווית של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \angle A} .
חוצה זווית פנימי וחוצה זווית חיצוני מאונכים זה לזה, מה שאומר ש-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \angle I_{A}BI = 90 = \angle I_{A}CI} . בגלל משפט תאלס השני, זה אומר שהמעגל שקוטרו הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle II_A} עובר דרך הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle B} ו-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle C} . מרכז מעגל זה צריך להיות על ישר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle II_A} (שכן הוא קוטר) וגם על האנך האמצעי של שכן אלו נקודות על המעגל. חיתוך שני הישרים האלו הוא הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle S} ולכן הוכחנו שיש מעגל שמרכזו הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle S} שעובר דרך הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle I,B,C,I_A} .
גרסה נוספת
למשפט ישנה גרסה נוספת, שכדי להוכיחה אפשר לקחת אחת מההוכחות הקודמות ולשנות בהתאם. נגדיר את N בתור חיתוך חוצה הזווית החיצוני של A והמעגל. הגרסה השנייה של המשפט אומרת כי יש מעגל שמרכזו N ושעובר דרך B,C,IB,IC.
בדרך כלל, קוראים לנקודות N,S בשמות האלה מכיוון שאם ישר BC הוא אופקי ו-A מעליו, S היא הנקודה הכי דרומית במעגל (South באנגלית) ו-N היא הנקודה הכי צפונית במעגל (North באנגלית).
שימוש לצורך בנית המשולש
בהינתן קודקוד אחד A, מרכז המעגל החסום I ומרכז המעגל החוסם O ניתן לבנות את המשולש ABC, באמצעות שימוש במשפט התלתן. הבניה היא כדלקמן:
- בונים את המעגל החוסם כמעגל שמרכזו O ושעובר דרך A
- הנקודה S נבנית על ידי חיתוך AI עם המעגל החוסם
- מעבירים מעגל עם מרכז S שעובר דרך I
- נקודות B,C הן שתי נקודות החיתוך של המעגל עם המעגל החוסם.
תהליך זה יכול להיכשל עבור A,O,I כלשהם, אם AI משיק למעגל החוסם או מפני שלשני המעגלים אין שתי נקודות חיתוך. תהליך זה גם יכול ליצור משולש בו הנקודה I היא מרכז מעגל החסום מבחוץ. במצבים אלו, לא קיים משולש אם A כקודקוד, I כמרכז המעגל החסום ו-O כמרכז המעגל החוסם.[1]
ראו גם
קישורים חיצוניים
- מעגלים חסומים מבפנים ומבחוץ, באתר MathWorld (באנגלית)
הערות שוליים
- ^ Yiu, Paul (2012), "Conic construction of a triangle from its incenter, nine-point center, and a vertex" (PDF), Journal for Geometry and Graphics, 16 (2): 171–183, MR 3088369
26295699משפט התלתן