משוואת החום

מתוך המכלול, האנציקלופדיה היהודית
(הופנה מהדף משוואת דיפוזיה)
קפיצה לניווט קפיצה לחיפוש
יש לשכתב ערך זה. הסיבה היא: כתוב כמו דף מספר לימוד, ללא הסבר אמיתי של המושג, חשיבותו ושימושיו.
אתם מוזמנים לסייע ולתקן את הבעיות, אך אנא אל תורידו את ההודעה כל עוד לא תוקן הדף.
יש לשכתב ערך זה. הסיבה היא: כתוב כמו דף מספר לימוד, ללא הסבר אמיתי של המושג, חשיבותו ושימושיו.
אתם מוזמנים לסייע ולתקן את הבעיות, אך אנא אל תורידו את ההודעה כל עוד לא תוקן הדף.
תצוגה גרפית לפתרון משוואת הולכת החום בממד אחד. (לחצו כאן לאנימציה)

משוואת החום (או משוואת הולכת החום וכן משוואת הדיפוזיה) היא משוואה דיפרנציאלית חלקית, המתארת את האופן שבו זורם חום בגוף מרחבי לאורך זמן. המשוואה הוצגה לראשונה על ידי ז'אן-בטיסט ז'וזף פורייה בתחילת המאה ה-19. המשוואה נקראת גם משוואת הדיפוזיה שכן היא מתארת באופן כללי פעפוע של חומר בזמן ובמרחב.

כמשוואה דיפרנציאלית חלקית, ניתן להגדיר פונקציה או משטח הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} ולו תנאי שפה ותנאי התחלה מתאימים, כלומר: מהם מקורות החום בזמן (תחילת התהליך) ומהם מקורות החום הקבועים על שפות הפונקציה. לאחר מכן, על ידי פתרון משוואת החום, ניתן לדעת מהו פילוג החום המתקבל בזמן עתידי כלשהו לפי הצורך.

לדוגמה, אם נרצה לתאר את פילוג החום עבור לוח בגודל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle L\times L} אשר בצלעו הימנית נמצא מקור חום קבוע, וברגע הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle t=0} בפינה השמאלית העליונה ישנו מקור חום נקודתי, ראשית נגדיר את המשטח הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle u(x,y,t)} . כעת נציב את תנאי השפה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle u(L,y,t)=h} ואת תנאי ההתחלה כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle h} הוא עצמת מקור החום הקבוע ו-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \delta(x,y)} היא פונקציית דלתא של דיראק. עם קבלת פתרון המשוואה, נוכל למשל לדעת מהו פילוג החום ברגעים הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle t=1, t=2} , וכן הלאה.

בעוד שלמשוואת החום מקורות פיזיקליים, הצורה המתמטית של המשוואה היא בעלת יישומים בתחומים מדעיים מגוונים. בתורת ההסתברות, משוואת החום קשורה לתאוריה של הילוכים מקריים; מן המשוואה ניתן לקבל את ההתפתחות בזמן של פונקציית צפיפות ההסתברות המייצגת את מיקומו של חלקיק המהלך אקראית[1]. במתמטיקה פיננסית נעשה בה שימוש כדי לפתור את המשוואה הדיפרנציאלית החלקית של מודל בלק ושולס. וריאנט של משוואת החום שימש אף ככלי מרכזי להוכחת השערת פואנקרה בטופולוגיה.

הגדרה

בצורתה המלאה, המשוואה נכתבת כך:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial u}{\partial t} = \nabla \cdot \bigg( \alpha(u,\vec{r}) \, \nabla u(\vec{r},t) \bigg) }

כאשר:

  • הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \, t} – הזמן
  • הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \, \vec{r}}וקטור המתאר מקום במרחב.
  • הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \, u} – הטמפרטורה כפונקציה של המיקום בגוף והזמן
  • αמקדם הדיפוזיה התרמית של החומר
  • ∇ – אופרטור הגזירה הווקטורי, דל.

בדרך כלל מתייחסים למקדם הדיפוזיה כאל קבוע במרחב ובטמפרטורה, ואז אפשר לכתוב:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial u}{\partial t} =\alpha\nabla^2 u (\vec{r},t) }

כאשר 2 הוא אופרטור הלפלסיאן, המשתנה כתלות המערכת הצירים. לדוגמה, במערכת צירים קרטזית, משוואת הולכת החום נראית כך:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\partial u\over \partial t} = \alpha \left({\partial^2 u\over \partial x^2 } + {\partial^2 u\over \partial y^2 } + {\partial^2 u\over \partial z^2 }\right) = \alpha ( u_{xx} + u_{yy} + u_{zz} ) \quad }

כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ u=u(x,y,z,t)} היא פונקציית הטמפרטורה, ו־α הוא מקדם הדיפוזיה התרמי של החומר.

משוואה כללית יותר, למצב בו יש יצור (או איבוד) של חום בחומר:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho c_p \frac{\partial u}{\partial t} - \nabla \cdot \left( k \nabla u \right) = \dot q_v }

כאשר:

  • מקדם מוליכות חום של החומר
  • הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho}צפיפות המסה של החומר
  • הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_p}קיבול החום הסגולי
  • הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dot q_v} – קצב יצור החום (באיבוד חום – שלילי)

ומקדם הדיפוזיה התרמית של החומר מוגדר במשוואה: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha = \frac{k}{c_p\rho}}

גם כאן, אם כל תכונות החומר קבועות, המשוואה הופכת לפשוטה יותר:

משוואת דיפוזיה

על אף השוני הפיזיקלי המהותי והמשמעותי ביניהן, משוואת חום ומשוואת דיפוזיה זהות מבחינה מתמטית, כאשר במשוואת הדיפוזיה, את מקומה של הטמפרטורה תופסת הצפיפות החומר, הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \phi\left(\mathbf{r},t\right)} , ואת מקדם הדיפוזיה התרמית מחליף מקדם הדיפוזיה של החומר, D:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial\phi(\mathbf{r},t)}{\partial t} = \nabla \cdot \big[ D(\phi,\mathbf{r}) \ \nabla\phi(\mathbf{r},t) \big] }

בדומה למשוואת החום, כאשר D קבוע, המשוואה הדיפרנציאלית נעשית ליניארית:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial\phi(\mathbf{r},t)}{\partial t} = D\nabla^2\phi(\mathbf{r},t) }

פתרון כללי לממד אחד

פתרון המשוואה, בממד אחד, על ידי הפרדת משתנים הוא:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ u(t,x) = X(x) T(t). \quad}


שני הצדדים של המשוואה הם משוואות התלויות במשתנים שונים, לכן הם חייבים להיות שווים לקבוע מספרי. הקבוע חייב להיות שלילי מכיוון שאחרת הטמפרטורה תגיע לאינסוף, ונסמנו λ²-. הפתרון הסופי המתקבל הוא:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle T(t) = A e^{-\lambda^2 k t} \quad }

ו

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle X(x) = B \sin(\lambda \, x) + C \cos(\lambda \, x).}

את הפרמטר λ נקבל מתנאי השפה של הבעיה, והמשך הפתרון על ידי טור פורייה.

דוגמה לאילוץ תנאי התחלה ושפה

ניקח מוט באורך L, המבודד כולו פרט לקצה אחד שלו, שם הוא מוחזק בטמפרטורה קבועה. התנאים שנקבל:

  • תנאי התחלה: בזמן t=0 כל המוט בטמפ' החדר: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle u(0,x) = T_{0} }
  • תנאי שפה א': הטמפרטורה במקום x=0 קבועה תמיד:
  • תנאי שפה ב': כל המוט מבודד, כך שנוכל לכתוב לגבי קצה המוט: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\partial u\over \partial x}(t,L) = 0 }

מכיוון שבמשוואה הגדלים דיפרנציאליים, נוכל לבחור את נקודת האפס כרצוננו. נבחר את נקודת האפס של הטמפרטורה ב- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_{max} } . למרות שהטמפרטורה במוט תמיד שלילית בסקלה זו, היא הטובה ביותר להתייחס בה לבעיה. נאלץ את תנאי שפה א':

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle u(t,0) = A e^{-\lambda^2 k t} * C = 0 \quad }

אילו A היה שווה ל-0 היה מתקבל הפתרון הטריוויאלי אשר אין לנו עניין בו.

ומכאן:

נאלץ את תנאי ב':

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\partial u\over \partial x}(t,L) = D e^{-\lambda^2 k t} \cos(\lambda \, L) = 0 }

כאשר D כולל בתוכו מספר פרמטרים שהיו קודם.

ונקבל כי λ יכול להיכתב בסדרה של ערכים אפשריים:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda \,_{n} = {\pi \, \over L} (n + \frac{1}{2}) }

מכאן שגם הפרמטר החופשי A יכול להיות מספר ערכים אפשריים, נקבל:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle u(t,x) = \sum_{n=0}^\infty A_{n} e^{-\lambda_{n}^2 k t} \ \sin(\lambda_{n} \, x) }

כשנשאר לנו למצוא את An. נאלץ את תנאי השפה באמצעות טור פורייה, וכפל בפונקציה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin(\lambda_{m} \, x)} עבור מספר שלם כלשהו m. אחרי ביצוע אינטגרל על כל המוט, נקבל:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_{n} = \frac{4 \ (T_{0}-T_{max})}{\pi \, (2n + 1)} }

כך שהפתרון למקרה אחרי אילוץ כל התנאים הוא:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle u(t,x) = T_{max} - \frac{4 \ (T_{max} - T_{0})}{\pi} \ \sum_{n=0}^\infty \frac{1}{2n+1} \ \sin \left( \pi \ (n+\frac{1}{2}) \ \frac{x}{L} \right) \ \exp \left( -\frac{k \ \pi^{2}}{L^{2}} \ (n+\frac{1}{2})^{2} \ t \right) }

משוואת הדיפוזיה בעיבוד תמונה

בנוסף לשימוש הקלאסי עבור זרימת חום בחומר, משוואת החום (או משוואת הדיפוזיה) משמשת בגרסתה הבסיסית או בגרסאות מוכללות בתחומים רבים. ניתן להראות כי עבור תנאי שפה מסוימים, פתרון משוואת החום הוא גרעין החלקה גאוסיאני בעל שונות הגדלה עם הזמן. דבר זה הופך את המשוואה רלוונטית לתחום של עיבוד תמונה, שכן כאשר מתייחסים לתמונה כמשטח מתאים, מקבלים כי הפעלת משוואת הדיפוזיה משמעותה החלקת התמונה במידה הולכת וגדלה עם הזמן, וכך ניתן לסנן רעש מתמונה.

בתחום זה, מגדירים גם דיפוזיה לא ליניארית, בה מקדם הדיפוזיה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle k(u,\vec{r})} אינו קבוע אלא תלוי בגרדיאנט התמונה. באופן זה ניתן לבצע סינון לא ליניארי ובכך לסנן רעש אך לשמר את השפות בתמונה, וזוהי תוצאה רצויה שכן השפות הן פרטים חשובים בהבנת התמונות ויש לשמרן. עם זאת, במקרים אלו אין בדרך כלל רצון למצוא פתרון סגור למשוואה אלא רק לבצע מספר מועט של צעדים בזמן.

קישורים חיצוניים

  • משוואת החום, באתר MathWorld (באנגלית)   המזהה לא מולא ולא נמצא בוויקינתונים, נא למלא את הפרמטר.

הערות שוליים

  1. ^ במקרה של הילוך מקרי בסריג חד-ממדי בעל הסתברות שווה לפנות ימינה או שמאלה, הסיכוי למצוא את החלקיק במרחק x מנקודת ההתחלה ובזמן t (שנסמנו הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi(x,t)} ) הוא ממוצע הסיכויים למצוא אותו במיקומים הפענוח נכשל (שגיאת המרה. השרת ("https://wikimedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle x-x_{0}} ו-הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x + x_0} בזמן הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle t - t_0} . לכן, "מקדם ההולכה" יהיה הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{{x_0^2}}{{2t_0}}} , כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_0} הוא גודל הצעד ו- הוא פרק הזמן מצעד לצעד.
הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0

32698428משוואת החום