השערת הארדי-ליטלווד השנייה
בתורת המספרים, השערת הארדי-ליטלווד השנייה (על שם המתמטיקאים הבריטים גודפרי הרולד הארדי וג'ון אדנזור ליטלווד) מתייחסת למספר המספרים הראשוניים בקטעים מסוימים.
ההשערה קובעת כי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi(x+y)-\pi(x)\le\pi(y)} לכל הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x,y\ge2} , כאשר הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi(x)} פונקציית המספרים הראשוניים. כלומר, מספר הראשוניים בקטע שאורכו הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} אינו עולה כאשר הקטע זז במעלה ציר המספרים. הוכח שהשערה זו סותרת את השערתם הראשונה על -יות של ראשוניים, שממנה נובע שאם קיימות דוגמאות נגדיות להשערה השנייה, אזי ערכו של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} צריך להיות גדול מאוד ביחס ל-.
38061570השערת הארדי-ליטלווד השנייה