הפרש ריבועים

מתוך המכלול, האנציקלופדיה היהודית
קפיצה לניווט קפיצה לחיפוש

במתמטיקה, הפרש ריבועים הוא ביטוי מהצורה .

זהות הפרש הריבועים

אחת הזהויות המוכרות ביותר באלגברה בסיסית היא לכל זוג מספרים .

הוכחה: נפתח את הסוגריים בביטוי לפי חוק הפילוג:

מכיוון שכפל הוא פעולה קומוטטיבית (כלומר ) מתקיים: , ולכן:

ומתקבלת הזהות הרצויה.

בהוכחת הזהות השתמשנו במעט מאד תכונות של מספרים; התכונות היחידות שנדרשנו להן הן חוק הפילוג, חוק הקיבוץ וחילופיות הכפל. תכונות אלו מתקיימות בכל חוג חילופי, ולכן בחוג כזה מתקיימת זהות הפרשי הריבועים. מהוכחת הזהות נובע שגם ההפך נכון: חוג שמתקיימת בו זהות הפרש הריבועים לכל זוג איברים הוא חילופי.

בשדה המספרים המרוכבים זהות הפרש הריבועים מאפשרת לפרק גם סכום של ריבועים. מכיוון ש- אזי מתקיים לכל מרוכבים:

לכל מספר מרוכב ( ממשיים) מוגדר מספר צמוד: וערך מוחלט: (זהו המרחק של מ־0 במישור המרוכב). לפי פירוק סכום הריבועים מתקיימת הזהות: .

הפרש של ריבועי טבעיים

שאלה בסיסית בתורת המספרים היא אילו מספרים טבעיים ניתנים להצגה כהפרש של שני מספרים ריבועיים. לשאלה זו פתרון פשוט יחסית בזכות קיומה של הזהות האלגברית הפשוטה.

אף מספר מהצורה אינו הפרש של שני מספרים ריבועיים. טענה זו פשוטה להוכחה בעזרת חשבון מודולו 4:

לכן מבדיקת כל האפשרויות עולה:

כל מספר אי־זוגי הוא הפרש של שני מספרים ריבועיים:

גם כל מספר מהצורה הוא הפרש שני מספרים ריבועיים:

המסקנה היא שמספר טבעי הוא הפרש של שני מספרים ריבועיים אם ורק אם הוא משאיר שארית שונה מ־2 בחלוקה ב־4.

אלגוריתמים רבים לפירוק לגורמים של מספר שלם מבוססים על התובנה שאם הוא מספר אי־זוגי אז:

הכללה

זהות הפרש הריבועים היא מקרה פרטי של זהות כללית של הפרש חזקות:

את הזהות ניתן להוכיח על ידי פתיחת סוגריים וצמצום הטור הטלסקופי המתקבל.

ראו גם

הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0