הלמה של איטו

מתוך המכלול, האנציקלופדיה היהודית
(הופנה מהדף אינטגרל איטו)
קפיצה לניווט קפיצה לחיפוש

במתמטיקה, הלמה של איטו היא למה המשמשת לחישוב הדיפרנציאל של תהליך סטוכסטי מסוג איטו. ללמה של איטו שימושים רבים, למשל בחישובים הכרוכים במערכות פיזיקליות בהן מתבצעת תנועה בראונית, ובשוק ההון בתמחור אופציות לפי מודל בלק ושולס. נקראת על שם המתמטיקאי היפני קיושי איטו.

בצורתה הבסיסית ביותר עוסקת הלמה של איטו בתהליכים סטוכסטיים המכונים "תהליכי איטו", בעלי מבנה של משוואה דיפרנציאלית סטוכסטית מהסוג: הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle dX_t= \sigma_t\,dB_t + \mu_t\,dt}

כאשר ו- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mu_t\,} הם משתנים התלויים פונקציונלית בזמן, המייצגים בדרך כלל את התוחלת וסטיית התקן של המשתנה המקרי הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ X} , ו- הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ B_t} מסמל תהליך בראוני סטנדרטי (המוכר גם בשם תהליך וינר).

הלמה קובעת שאם הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ f:[a,b] \times \mathbb{R} \to \mathbb{R}} היא פונקציה גזירה ברציפות פעמיים הפענוח נכשל (שגיאת המרה. השרת ("https://wikimedia.org/api/rest_") השיב: "Cannot get mml. Server problem."): {\displaystyle \ \left(C^{2}\right)} אזי הדיפרנציאל הסטוכסטי של הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ f(X_t)} קיים (ומהווה גם הוא תהליך איטו) ומתקיים:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} df(X_t) &= f^\prime(X_t)\,dX_t + \frac{1}{2}f^{\prime\prime}(X_t)\sigma^2_t\,dt\\ &= f^\prime(X_t)\sigma_t\,dB_t + \left(f^\prime(X_t)\mu_t+\frac{1}{2}f^{\prime\prime}(X_t)\sigma^2_t\right)\,dt. \end{align} }

כאשר f היא פונקציה גם של X וגם של t, הנוסחא המלאה (הדו-ממדית) היא:

הפענוח נכשל (SVG (אפשר להפעיל MathML בעזרת הרחבת דפדפן): תשובה בלתי־תקינה ("Math extension cannot connect to Restbase.") מהשרת "https://wikimedia.org/api/rest_v1/":): {\displaystyle df(t,X_t) =\left(\frac{\partial f}{\partial t} + \mu_t \frac{\partial f}{\partial x} + \frac{1}{2}\sigma_t^2\frac{\partial^2f}{\partial x^2}\right)dt+ \sigma_t \frac{\partial f}{\partial x}\,dB_t }
ערך זה הוא קצרמר בנושא מתמטיקה. אתם מוזמנים לתרום למכלול ולהרחיב אותו.
הערך באדיבות ויקיפדיה העברית, קרדיט,
רשימת התורמים
רישיון cc-by-sa 3.0

21531500הלמה של איטו